Commit
·
18c1434
1
Parent(s):
f97a253
backend import in child load_model method and expose logfile arg
Browse files- whisper_online.py +29 -38
whisper_online.py
CHANGED
|
@@ -30,12 +30,8 @@ class ASRBase:
|
|
| 30 |
self.transcribe_kargs = {}
|
| 31 |
self.original_language = lan
|
| 32 |
|
| 33 |
-
self.import_backend()
|
| 34 |
self.model = self.load_model(modelsize, cache_dir, model_dir)
|
| 35 |
|
| 36 |
-
def import_backend(self):
|
| 37 |
-
raise NotImplemented("must be implemented in the child class")
|
| 38 |
-
|
| 39 |
def load_model(self, modelsize, cache_dir):
|
| 40 |
raise NotImplemented("must be implemented in the child class")
|
| 41 |
|
|
@@ -52,15 +48,13 @@ class WhisperTimestampedASR(ASRBase):
|
|
| 52 |
"""
|
| 53 |
|
| 54 |
sep = " "
|
| 55 |
-
|
| 56 |
-
def import_backend(self):
|
| 57 |
-
global whisper, whisper_timestamped
|
| 58 |
-
import whisper
|
| 59 |
-
import whisper_timestamped
|
| 60 |
|
| 61 |
def load_model(self, modelsize=None, cache_dir=None, model_dir=None):
|
|
|
|
|
|
|
|
|
|
| 62 |
if model_dir is not None:
|
| 63 |
-
print("ignoring model_dir, not implemented",file=self.
|
| 64 |
return whisper.load_model(modelsize, download_root=cache_dir)
|
| 65 |
|
| 66 |
def transcribe(self, audio, init_prompt=""):
|
|
@@ -89,13 +83,10 @@ class FasterWhisperASR(ASRBase):
|
|
| 89 |
|
| 90 |
sep = ""
|
| 91 |
|
| 92 |
-
def import_backend(self):
|
| 93 |
-
global faster_whisper
|
| 94 |
-
import faster_whisper
|
| 95 |
-
|
| 96 |
def load_model(self, modelsize=None, cache_dir=None, model_dir=None):
|
|
|
|
| 97 |
if model_dir is not None:
|
| 98 |
-
print(f"Loading whisper model from model_dir {model_dir}. modelsize and cache_dir parameters are not used.",file=self.
|
| 99 |
model_size_or_path = model_dir
|
| 100 |
elif modelsize is not None:
|
| 101 |
model_size_or_path = modelsize
|
|
@@ -143,7 +134,7 @@ class FasterWhisperASR(ASRBase):
|
|
| 143 |
|
| 144 |
class HypothesisBuffer:
|
| 145 |
|
| 146 |
-
def __init__(self,
|
| 147 |
"""output: where to store the log. Leave it unchanged to print to terminal."""
|
| 148 |
self.commited_in_buffer = []
|
| 149 |
self.buffer = []
|
|
@@ -152,7 +143,7 @@ class HypothesisBuffer:
|
|
| 152 |
self.last_commited_time = 0
|
| 153 |
self.last_commited_word = None
|
| 154 |
|
| 155 |
-
self.
|
| 156 |
|
| 157 |
def insert(self, new, offset):
|
| 158 |
# compare self.commited_in_buffer and new. It inserts only the words in new that extend the commited_in_buffer, it means they are roughly behind last_commited_time and new in content
|
|
@@ -172,9 +163,9 @@ class HypothesisBuffer:
|
|
| 172 |
c = " ".join([self.commited_in_buffer[-j][2] for j in range(1,i+1)][::-1])
|
| 173 |
tail = " ".join(self.new[j-1][2] for j in range(1,i+1))
|
| 174 |
if c == tail:
|
| 175 |
-
print("removing last",i,"words:",file=self.
|
| 176 |
for j in range(i):
|
| 177 |
-
print("\t",self.new.pop(0),file=self.
|
| 178 |
break
|
| 179 |
|
| 180 |
def flush(self):
|
|
@@ -211,14 +202,14 @@ class OnlineASRProcessor:
|
|
| 211 |
|
| 212 |
SAMPLING_RATE = 16000
|
| 213 |
|
| 214 |
-
def __init__(self, asr, tokenizer,
|
| 215 |
"""asr: WhisperASR object
|
| 216 |
tokenizer: sentence tokenizer object for the target language. Must have a method *split* that behaves like the one of MosesTokenizer.
|
| 217 |
output: where to store the log. Leave it unchanged to print to terminal.
|
| 218 |
"""
|
| 219 |
self.asr = asr
|
| 220 |
self.tokenizer = tokenizer
|
| 221 |
-
self.
|
| 222 |
|
| 223 |
self.init()
|
| 224 |
|
|
@@ -227,7 +218,7 @@ class OnlineASRProcessor:
|
|
| 227 |
self.audio_buffer = np.array([],dtype=np.float32)
|
| 228 |
self.buffer_time_offset = 0
|
| 229 |
|
| 230 |
-
self.transcript_buffer = HypothesisBuffer(
|
| 231 |
self.commited = []
|
| 232 |
self.last_chunked_at = 0
|
| 233 |
|
|
@@ -262,9 +253,9 @@ class OnlineASRProcessor:
|
|
| 262 |
"""
|
| 263 |
|
| 264 |
prompt, non_prompt = self.prompt()
|
| 265 |
-
print("PROMPT:", prompt, file=self.
|
| 266 |
-
print("CONTEXT:", non_prompt, file=self.
|
| 267 |
-
print(f"transcribing {len(self.audio_buffer)/self.SAMPLING_RATE:2.2f} seconds from {self.buffer_time_offset:2.2f}",file=self.
|
| 268 |
res = self.asr.transcribe(self.audio_buffer, init_prompt=prompt)
|
| 269 |
|
| 270 |
# transform to [(beg,end,"word1"), ...]
|
|
@@ -273,8 +264,8 @@ class OnlineASRProcessor:
|
|
| 273 |
self.transcript_buffer.insert(tsw, self.buffer_time_offset)
|
| 274 |
o = self.transcript_buffer.flush()
|
| 275 |
self.commited.extend(o)
|
| 276 |
-
print(">>>>COMPLETE NOW:",self.to_flush(o),file=self.
|
| 277 |
-
print("INCOMPLETE:",self.to_flush(self.transcript_buffer.complete()),file=self.
|
| 278 |
|
| 279 |
# there is a newly confirmed text
|
| 280 |
if o:
|
|
@@ -293,14 +284,14 @@ class OnlineASRProcessor:
|
|
| 293 |
# elif self.transcript_buffer.complete():
|
| 294 |
# self.silence_iters = 0
|
| 295 |
# elif not self.transcript_buffer.complete():
|
| 296 |
-
# # print("NOT COMPLETE:",to_flush(self.transcript_buffer.complete()),file=self.
|
| 297 |
# self.silence_iters += 1
|
| 298 |
# if self.silence_iters >= 3:
|
| 299 |
# n = self.last_chunked_at
|
| 300 |
## self.chunk_completed_sentence()
|
| 301 |
## if n == self.last_chunked_at:
|
| 302 |
# self.chunk_at(self.last_chunked_at+self.chunk)
|
| 303 |
-
# print(f"\tCHUNK: 3-times silence! chunk_at {n}+{self.chunk}",file=self.
|
| 304 |
## self.silence_iters = 0
|
| 305 |
|
| 306 |
|
|
@@ -316,18 +307,18 @@ class OnlineASRProcessor:
|
|
| 316 |
#while k>0 and self.commited[k][1] > l:
|
| 317 |
# k -= 1
|
| 318 |
#t = self.commited[k][1]
|
| 319 |
-
print(f"chunking because of len",file=self.
|
| 320 |
#self.chunk_at(t)
|
| 321 |
|
| 322 |
-
print(f"len of buffer now: {len(self.audio_buffer)/self.SAMPLING_RATE:2.2f}",file=self.
|
| 323 |
return self.to_flush(o)
|
| 324 |
|
| 325 |
def chunk_completed_sentence(self):
|
| 326 |
if self.commited == []: return
|
| 327 |
-
print(self.commited,file=self.
|
| 328 |
sents = self.words_to_sentences(self.commited)
|
| 329 |
for s in sents:
|
| 330 |
-
print("\t\tSENT:",s,file=self.
|
| 331 |
if len(sents) < 2:
|
| 332 |
return
|
| 333 |
while len(sents) > 2:
|
|
@@ -335,7 +326,7 @@ class OnlineASRProcessor:
|
|
| 335 |
# we will continue with audio processing at this timestamp
|
| 336 |
chunk_at = sents[-2][1]
|
| 337 |
|
| 338 |
-
print(f"--- sentence chunked at {chunk_at:2.2f}",file=self.
|
| 339 |
self.chunk_at(chunk_at)
|
| 340 |
|
| 341 |
def chunk_completed_segment(self, res):
|
|
@@ -352,12 +343,12 @@ class OnlineASRProcessor:
|
|
| 352 |
ends.pop(-1)
|
| 353 |
e = ends[-2]+self.buffer_time_offset
|
| 354 |
if e <= t:
|
| 355 |
-
print(f"--- segment chunked at {e:2.2f}",file=self.
|
| 356 |
self.chunk_at(e)
|
| 357 |
else:
|
| 358 |
-
print(f"--- last segment not within commited area",file=self.
|
| 359 |
else:
|
| 360 |
-
print(f"--- not enough segments to chunk",file=self.
|
| 361 |
|
| 362 |
|
| 363 |
|
|
@@ -403,7 +394,7 @@ class OnlineASRProcessor:
|
|
| 403 |
"""
|
| 404 |
o = self.transcript_buffer.complete()
|
| 405 |
f = self.to_flush(o)
|
| 406 |
-
print("last, noncommited:",f,file=self.
|
| 407 |
return f
|
| 408 |
|
| 409 |
|
|
|
|
| 30 |
self.transcribe_kargs = {}
|
| 31 |
self.original_language = lan
|
| 32 |
|
|
|
|
| 33 |
self.model = self.load_model(modelsize, cache_dir, model_dir)
|
| 34 |
|
|
|
|
|
|
|
|
|
|
| 35 |
def load_model(self, modelsize, cache_dir):
|
| 36 |
raise NotImplemented("must be implemented in the child class")
|
| 37 |
|
|
|
|
| 48 |
"""
|
| 49 |
|
| 50 |
sep = " "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
def load_model(self, modelsize=None, cache_dir=None, model_dir=None):
|
| 53 |
+
global whisper_timestamped # has to be global as it is used at each `transcribe` call
|
| 54 |
+
import whisper
|
| 55 |
+
import whisper_timestamped
|
| 56 |
if model_dir is not None:
|
| 57 |
+
print("ignoring model_dir, not implemented",file=self.logfile)
|
| 58 |
return whisper.load_model(modelsize, download_root=cache_dir)
|
| 59 |
|
| 60 |
def transcribe(self, audio, init_prompt=""):
|
|
|
|
| 83 |
|
| 84 |
sep = ""
|
| 85 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
def load_model(self, modelsize=None, cache_dir=None, model_dir=None):
|
| 87 |
+
from faster_whisper import WhisperModel
|
| 88 |
if model_dir is not None:
|
| 89 |
+
print(f"Loading whisper model from model_dir {model_dir}. modelsize and cache_dir parameters are not used.",file=self.logfile)
|
| 90 |
model_size_or_path = model_dir
|
| 91 |
elif modelsize is not None:
|
| 92 |
model_size_or_path = modelsize
|
|
|
|
| 134 |
|
| 135 |
class HypothesisBuffer:
|
| 136 |
|
| 137 |
+
def __init__(self, logfile=sys.stderr):
|
| 138 |
"""output: where to store the log. Leave it unchanged to print to terminal."""
|
| 139 |
self.commited_in_buffer = []
|
| 140 |
self.buffer = []
|
|
|
|
| 143 |
self.last_commited_time = 0
|
| 144 |
self.last_commited_word = None
|
| 145 |
|
| 146 |
+
self.logfile = logfile
|
| 147 |
|
| 148 |
def insert(self, new, offset):
|
| 149 |
# compare self.commited_in_buffer and new. It inserts only the words in new that extend the commited_in_buffer, it means they are roughly behind last_commited_time and new in content
|
|
|
|
| 163 |
c = " ".join([self.commited_in_buffer[-j][2] for j in range(1,i+1)][::-1])
|
| 164 |
tail = " ".join(self.new[j-1][2] for j in range(1,i+1))
|
| 165 |
if c == tail:
|
| 166 |
+
print("removing last",i,"words:",file=self.logfile)
|
| 167 |
for j in range(i):
|
| 168 |
+
print("\t",self.new.pop(0),file=self.logfile)
|
| 169 |
break
|
| 170 |
|
| 171 |
def flush(self):
|
|
|
|
| 202 |
|
| 203 |
SAMPLING_RATE = 16000
|
| 204 |
|
| 205 |
+
def __init__(self, asr, tokenizer, logfile=sys.stderr):
|
| 206 |
"""asr: WhisperASR object
|
| 207 |
tokenizer: sentence tokenizer object for the target language. Must have a method *split* that behaves like the one of MosesTokenizer.
|
| 208 |
output: where to store the log. Leave it unchanged to print to terminal.
|
| 209 |
"""
|
| 210 |
self.asr = asr
|
| 211 |
self.tokenizer = tokenizer
|
| 212 |
+
self.logfile = logfile
|
| 213 |
|
| 214 |
self.init()
|
| 215 |
|
|
|
|
| 218 |
self.audio_buffer = np.array([],dtype=np.float32)
|
| 219 |
self.buffer_time_offset = 0
|
| 220 |
|
| 221 |
+
self.transcript_buffer = HypothesisBuffer(logfile=self.logfile)
|
| 222 |
self.commited = []
|
| 223 |
self.last_chunked_at = 0
|
| 224 |
|
|
|
|
| 253 |
"""
|
| 254 |
|
| 255 |
prompt, non_prompt = self.prompt()
|
| 256 |
+
print("PROMPT:", prompt, file=self.logfile)
|
| 257 |
+
print("CONTEXT:", non_prompt, file=self.logfile)
|
| 258 |
+
print(f"transcribing {len(self.audio_buffer)/self.SAMPLING_RATE:2.2f} seconds from {self.buffer_time_offset:2.2f}",file=self.logfile)
|
| 259 |
res = self.asr.transcribe(self.audio_buffer, init_prompt=prompt)
|
| 260 |
|
| 261 |
# transform to [(beg,end,"word1"), ...]
|
|
|
|
| 264 |
self.transcript_buffer.insert(tsw, self.buffer_time_offset)
|
| 265 |
o = self.transcript_buffer.flush()
|
| 266 |
self.commited.extend(o)
|
| 267 |
+
print(">>>>COMPLETE NOW:",self.to_flush(o),file=self.logfile,flush=True)
|
| 268 |
+
print("INCOMPLETE:",self.to_flush(self.transcript_buffer.complete()),file=self.logfile,flush=True)
|
| 269 |
|
| 270 |
# there is a newly confirmed text
|
| 271 |
if o:
|
|
|
|
| 284 |
# elif self.transcript_buffer.complete():
|
| 285 |
# self.silence_iters = 0
|
| 286 |
# elif not self.transcript_buffer.complete():
|
| 287 |
+
# # print("NOT COMPLETE:",to_flush(self.transcript_buffer.complete()),file=self.logfile,flush=True)
|
| 288 |
# self.silence_iters += 1
|
| 289 |
# if self.silence_iters >= 3:
|
| 290 |
# n = self.last_chunked_at
|
| 291 |
## self.chunk_completed_sentence()
|
| 292 |
## if n == self.last_chunked_at:
|
| 293 |
# self.chunk_at(self.last_chunked_at+self.chunk)
|
| 294 |
+
# print(f"\tCHUNK: 3-times silence! chunk_at {n}+{self.chunk}",file=self.logfile)
|
| 295 |
## self.silence_iters = 0
|
| 296 |
|
| 297 |
|
|
|
|
| 307 |
#while k>0 and self.commited[k][1] > l:
|
| 308 |
# k -= 1
|
| 309 |
#t = self.commited[k][1]
|
| 310 |
+
print(f"chunking because of len",file=self.logfile)
|
| 311 |
#self.chunk_at(t)
|
| 312 |
|
| 313 |
+
print(f"len of buffer now: {len(self.audio_buffer)/self.SAMPLING_RATE:2.2f}",file=self.logfile)
|
| 314 |
return self.to_flush(o)
|
| 315 |
|
| 316 |
def chunk_completed_sentence(self):
|
| 317 |
if self.commited == []: return
|
| 318 |
+
print(self.commited,file=self.logfile)
|
| 319 |
sents = self.words_to_sentences(self.commited)
|
| 320 |
for s in sents:
|
| 321 |
+
print("\t\tSENT:",s,file=self.logfile)
|
| 322 |
if len(sents) < 2:
|
| 323 |
return
|
| 324 |
while len(sents) > 2:
|
|
|
|
| 326 |
# we will continue with audio processing at this timestamp
|
| 327 |
chunk_at = sents[-2][1]
|
| 328 |
|
| 329 |
+
print(f"--- sentence chunked at {chunk_at:2.2f}",file=self.logfile)
|
| 330 |
self.chunk_at(chunk_at)
|
| 331 |
|
| 332 |
def chunk_completed_segment(self, res):
|
|
|
|
| 343 |
ends.pop(-1)
|
| 344 |
e = ends[-2]+self.buffer_time_offset
|
| 345 |
if e <= t:
|
| 346 |
+
print(f"--- segment chunked at {e:2.2f}",file=self.logfile)
|
| 347 |
self.chunk_at(e)
|
| 348 |
else:
|
| 349 |
+
print(f"--- last segment not within commited area",file=self.logfile)
|
| 350 |
else:
|
| 351 |
+
print(f"--- not enough segments to chunk",file=self.logfile)
|
| 352 |
|
| 353 |
|
| 354 |
|
|
|
|
| 394 |
"""
|
| 395 |
o = self.transcript_buffer.complete()
|
| 396 |
f = self.to_flush(o)
|
| 397 |
+
print("last, noncommited:",f,file=self.logfile)
|
| 398 |
return f
|
| 399 |
|
| 400 |
|