Spaces:
Runtime error
Runtime error
Commit
·
4ca63a2
1
Parent(s):
0e5f2ec
initial commit
Browse files- complaintbox_appV1.py +111 -0
complaintbox_appV1.py
ADDED
|
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
|
| 3 |
+
import tweepy
|
| 4 |
+
import time
|
| 5 |
+
import pandas as pd
|
| 6 |
+
from transformers import pipeline
|
| 7 |
+
import matplotlib.pyplot as plt
|
| 8 |
+
import gradio as gr
|
| 9 |
+
|
| 10 |
+
def twitter_auth(consumerkey,consumersecret):
|
| 11 |
+
consumer_key = consumerkey
|
| 12 |
+
consumer_secret = consumersecret
|
| 13 |
+
|
| 14 |
+
auth = tweepy.AppAuthHandler(consumer_key,consumer_secret)
|
| 15 |
+
|
| 16 |
+
api = tweepy.API(auth,wait_on_rate_limit= True,wait_on_rate_limit_notify=True)
|
| 17 |
+
return api
|
| 18 |
+
|
| 19 |
+
"""## Helper function for handling ratelimit and pagination"""
|
| 20 |
+
|
| 21 |
+
def limit_handled(cursor):
|
| 22 |
+
"""
|
| 23 |
+
Function takes the cursor and returns tweets
|
| 24 |
+
"""
|
| 25 |
+
while True:
|
| 26 |
+
try:
|
| 27 |
+
yield cursor.next()
|
| 28 |
+
except tweepy.RateLimitError:
|
| 29 |
+
print('reached rate limit, sleeping for > 15 mins')
|
| 30 |
+
time.sleep(15*61)
|
| 31 |
+
except StopIteration:
|
| 32 |
+
break
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def tweets_collector(query,count):
|
| 37 |
+
api = twitter_auth(consumerkey,consumersecret)
|
| 38 |
+
query = query +' -filter:retweets'
|
| 39 |
+
search = limit_handled(tweepy.Cursor(api.search,q = query,tweet_mode = 'extended',lang ='en',result_type ='recent').items(count))
|
| 40 |
+
sentiment_analysis = pipeline(model = "finiteautomata/bertweet-base-sentiment-analysis")
|
| 41 |
+
tweets = []
|
| 42 |
+
|
| 43 |
+
for tweet in search:
|
| 44 |
+
try:
|
| 45 |
+
content = tweet.full_text
|
| 46 |
+
sentiment = sentiment_analysis(content)
|
| 47 |
+
tweets.append({'tweet' : content ,'sentiment': sentiment[0]['label']})
|
| 48 |
+
except:
|
| 49 |
+
pass
|
| 50 |
+
return tweets
|
| 51 |
+
|
| 52 |
+
"""## Run sentiment Analysis"""
|
| 53 |
+
|
| 54 |
+
#tweets = tweets_collector(query,count)
|
| 55 |
+
#df = pd.DataFrame(tweets)
|
| 56 |
+
|
| 57 |
+
import pandas as pd
|
| 58 |
+
|
| 59 |
+
pd.set_option('max_colwidth',None)
|
| 60 |
+
pd.set_option('display.width',3000)
|
| 61 |
+
|
| 62 |
+
#import matplotlib.pyplot as plt
|
| 63 |
+
|
| 64 |
+
#sentiment_counts = df.groupby(['sentiment']).size()
|
| 65 |
+
|
| 66 |
+
#fig = plt.figure(figsize = (6,6),dpi = 100)
|
| 67 |
+
#ax = plt.subplot(111)
|
| 68 |
+
#sentiment_counts.plot.pie(ax = ax,autopct = '%1.f%%',startangle = 270,fontsize = 12,label = "")
|
| 69 |
+
|
| 70 |
+
def complaint_analysis(query,count):
|
| 71 |
+
tweets = tweets_collector(query,count)
|
| 72 |
+
df = pd.DataFrame(tweets)
|
| 73 |
+
from wordcloud import WordCloud
|
| 74 |
+
from wordcloud import STOPWORDS
|
| 75 |
+
sentiment_counts = df.groupby(['sentiment']).size()
|
| 76 |
+
fig = plt.figure(figsize = (6,6),dpi = 100)
|
| 77 |
+
ax = plt.subplot(111)
|
| 78 |
+
sentiment_counts.plot.pie(ax = ax,autopct = '%1.f%%',startangle = 270,fontsize = 12,label = "")
|
| 79 |
+
plt.savefig('Overall_satisfaction.png')
|
| 80 |
+
|
| 81 |
+
positive_tweets = df['tweet'][df['sentiment'] == 'POS']
|
| 82 |
+
stop_words = ["https","co","RT","ola_supports","ola_cabs","customer"] + list(STOPWORDS)
|
| 83 |
+
positive_wordcloud = WordCloud(max_font_size=50,max_words = 30,background_color="white",stopwords=stop_words).generate(str(positive_tweets))
|
| 84 |
+
plt.figure()
|
| 85 |
+
plt.title("Positive Tweets - Wordcloud")
|
| 86 |
+
plt.imshow(positive_wordcloud,interpolation="bilinear")
|
| 87 |
+
plt.axis("off")
|
| 88 |
+
#plt.show()
|
| 89 |
+
plt.savefig('positive_tweet.png')
|
| 90 |
+
negative_tweets = df['tweet'][df['sentiment'] == 'NEG']
|
| 91 |
+
stop_words = ["https","co","RT","ola_supports","ola_cabs","customer"] + list(STOPWORDS)
|
| 92 |
+
negative_wordcloud = WordCloud(max_font_size=50,max_words = 30,background_color="white",stopwords=stop_words).generate(str(negative_tweets))
|
| 93 |
+
plt.figure()
|
| 94 |
+
plt.title("Negative Tweets - Wordcloud")
|
| 95 |
+
plt.imshow(negative_wordcloud,interpolation="bilinear")
|
| 96 |
+
plt.axis("off")
|
| 97 |
+
#plt.show()
|
| 98 |
+
plt.savefig('negative_tweet.png')
|
| 99 |
+
return ['Overall_satisfaction.png','positive_tweet.png','negative_tweet.png']
|
| 100 |
+
|
| 101 |
+
gr.Interface(fn=complaint_analysis,
|
| 102 |
+
inputs=[
|
| 103 |
+
gr.inputs.Textbox(
|
| 104 |
+
placeholder="Tweet handle ples", label="Company support Twitter Handle", lines=5), gr.Slider(100, 1000) ],
|
| 105 |
+
outputs= [gr.outputs.Image(type="pil"),gr.outputs.Image(type="pil"),gr.outputs.Image(type="pil")],
|
| 106 |
+
examples=[]).launch(debug= True)
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
|