Spaces:
Runtime error
Runtime error
| #!/usr/bin/env python | |
| # coding=utf-8 | |
| # Copyright 2023 The HuggingFace Inc. team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| import argparse | |
| import copy | |
| import logging | |
| import math | |
| import os | |
| import shutil | |
| from pathlib import Path | |
| import einops | |
| import numpy as np | |
| import torch | |
| import torch.nn.functional as F | |
| import torch.utils.checkpoint | |
| import transformers | |
| from accelerate import Accelerator | |
| from accelerate.logging import get_logger | |
| from accelerate.utils import ProjectConfiguration, set_seed, DistributedDataParallelKwargs | |
| from dataset import ObjaverseData | |
| from huggingface_hub import create_repo, upload_folder | |
| from packaging import version | |
| from PIL import Image | |
| from torchvision import transforms | |
| from tqdm.auto import tqdm | |
| from CN_encoder import CN_encoder | |
| import diffusers | |
| from diffusers import ( | |
| AutoencoderKL, | |
| DDIMScheduler, | |
| DDPMScheduler, | |
| # UNet2DConditionModel, | |
| ) | |
| from unet_2d_condition import UNet2DConditionModel | |
| from pipeline_zero1to3 import Zero1to3StableDiffusionPipeline | |
| from diffusers.optimization import get_scheduler | |
| from diffusers.utils import is_wandb_available | |
| from diffusers.utils.import_utils import is_xformers_available | |
| from diffusers.training_utils import EMAModel | |
| import torchvision | |
| import itertools | |
| # metrics | |
| import cv2 | |
| from skimage.metrics import structural_similarity as calculate_ssim | |
| import lpips | |
| LPIPS = lpips.LPIPS(net='alex', version='0.1') | |
| if is_wandb_available(): | |
| import wandb | |
| # Will error if the minimal version of diffusers is not installed. Remove at your own risks. | |
| # check_min_version("0.19.0.dev0") | |
| logger = get_logger(__name__) | |
| def image_grid(imgs, rows, cols): | |
| assert len(imgs) == rows * cols | |
| w, h = imgs[0].size | |
| grid = Image.new("RGB", size=(cols * w, rows * h)) | |
| for i, img in enumerate(imgs): | |
| grid.paste(img, box=(i % cols * w, i // cols * h)) | |
| return grid | |
| def log_validation(validation_dataloader, vae, image_encoder, feature_extractor, unet, args, accelerator, weight_dtype, split="val"): | |
| logger.info("Running {} validation... ".format(split)) | |
| scheduler = DDIMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") | |
| pipeline = Zero1to3StableDiffusionPipeline.from_pretrained( | |
| args.pretrained_model_name_or_path, | |
| vae=accelerator.unwrap_model(vae).eval(), | |
| image_encoder=accelerator.unwrap_model(image_encoder).eval(), | |
| feature_extractor=feature_extractor, | |
| unet=accelerator.unwrap_model(unet).eval(), | |
| scheduler=scheduler, | |
| safety_checker=None, | |
| torch_dtype=weight_dtype, | |
| ) | |
| pipeline = pipeline.to(accelerator.device) | |
| pipeline.set_progress_bar_config(disable=True) | |
| if args.enable_xformers_memory_efficient_attention: | |
| pipeline.enable_xformers_memory_efficient_attention() | |
| if args.seed is None: | |
| generator = None | |
| else: | |
| generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) | |
| image_logs = [] | |
| val_lpips = 0 | |
| val_ssim = 0 | |
| val_psnr = 0 | |
| val_loss = 0 | |
| val_num = 0 | |
| T_out = args.T_out # fix to be 1? | |
| for T_in_val in [1, args.T_in_val//2, args.T_in_val]: # eval different number of given views | |
| for valid_step, batch in tqdm(enumerate(validation_dataloader)): | |
| if args.num_validation_batches is not None and valid_step >= args.num_validation_batches: | |
| break | |
| T_in = T_in_val | |
| gt_image = batch["image_target"].to(dtype=weight_dtype) | |
| input_image = batch["image_input"].to(dtype=weight_dtype)[:, :T_in] | |
| pose_in = batch["pose_in"].to(dtype=weight_dtype)[:, :T_in] # BxTx4 | |
| pose_out = batch["pose_out"].to(dtype=weight_dtype) # BxTx4 | |
| pose_in_inv = batch["pose_in_inv"].to(dtype=weight_dtype)[:, :T_in] # BxTx4 | |
| pose_out_inv = batch["pose_out_inv"].to(dtype=weight_dtype) # BxTx4 | |
| gt_image = einops.rearrange(gt_image, 'b t c h w -> (b t) c h w', t=T_out) | |
| input_image = einops.rearrange(input_image, 'b t c h w -> (b t) c h w', t=T_in) # T_in | |
| images = [] | |
| h, w = input_image.shape[2:] | |
| for _ in range(args.num_validation_images): | |
| with torch.autocast("cuda"): | |
| image = pipeline(input_imgs=input_image, prompt_imgs=input_image, poses=[[pose_out, pose_out_inv], [pose_in, pose_in_inv]], height=h, width=w, T_in=T_in, T_out=pose_out.shape[1], | |
| guidance_scale=args.guidance_scale, num_inference_steps=50, generator=generator, output_type="numpy").images | |
| pred_image = torch.from_numpy(image * 2. - 1.).permute(0, 3, 1, 2) | |
| images.append(pred_image) | |
| pred_np = (image * 255).astype(np.uint8) # [0,1] | |
| gt_np = (gt_image / 2 + 0.5).clamp(0, 1) | |
| gt_np = (gt_np.cpu().permute(0, 2, 3, 1).float().numpy()*255).astype(np.uint8) | |
| # for 1 image | |
| # pixel loss | |
| loss = F.mse_loss(pred_image[0], gt_image[0].cpu()).item() | |
| # LPIPS | |
| lpips = LPIPS(pred_image[0], gt_image[0].cpu()).item() # [-1, 1] torch tensor | |
| # SSIM | |
| ssim = calculate_ssim(pred_np[0], gt_np[0], channel_axis=2) | |
| # PSNR | |
| psnr = cv2.PSNR(gt_np[0], pred_np[0]) | |
| val_loss += loss | |
| val_lpips += lpips | |
| val_ssim += ssim | |
| val_psnr += psnr | |
| val_num += 1 | |
| image_logs.append( | |
| {"gt_image": gt_image, "pred_images": images, "input_image": input_image} | |
| ) | |
| pixel_loss = val_loss / val_num | |
| pixel_lpips= val_lpips / val_num | |
| pixel_ssim = val_ssim / val_num | |
| pixel_psnr = val_psnr / val_num | |
| for tracker in accelerator.trackers: | |
| if tracker.name == "wandb": | |
| # need to use table, wandb doesn't allow more than 108 images | |
| assert args.num_validation_images == 2 | |
| table = wandb.Table(columns=["Input", "GT", "Pred1", "Pred2"]) | |
| for log_id, log in enumerate(image_logs): | |
| formatted_images = [[], [], []] # [[input], [gt], [pred]] | |
| pred_images = log["pred_images"] # pred | |
| input_image = log["input_image"] # input | |
| gt_image = log["gt_image"] # GT | |
| formatted_images[0].append(wandb.Image(input_image, caption="{}_input".format(log_id))) | |
| formatted_images[1].append(wandb.Image(gt_image, caption="{}_gt".format(log_id))) | |
| for sample_id, pred_image in enumerate(pred_images): # n_samples | |
| pred_image = wandb.Image(pred_image, caption="{}_pred_{}".format(log_id, sample_id)) | |
| formatted_images[2].append(pred_image) | |
| table.add_data(*formatted_images[0], *formatted_images[1], *formatted_images[2]) | |
| tracker.log({split: table, # formatted_images | |
| "{}_T{}_pixel_loss".format(split, T_in_val): pixel_loss, | |
| "{}_T{}_lpips".format(split, T_in_val): pixel_lpips, | |
| "{}_T{}_ssim".format(split, T_in_val): pixel_ssim, | |
| "{}_T{}_psnr".format(split, T_in_val): pixel_psnr}) | |
| else: | |
| logger.warn(f"image logging not implemented for {tracker.name}") | |
| # del pipeline | |
| # torch.cuda.empty_cache() | |
| # after validation, set the pipeline back to training mode | |
| unet.train() | |
| vae.eval() | |
| image_encoder.train() | |
| return image_logs | |
| def parse_args(input_args=None): | |
| parser = argparse.ArgumentParser(description="Simple example of a Zero123 training script.") | |
| parser.add_argument( | |
| "--pretrained_model_name_or_path", | |
| type=str, | |
| default="lambdalabs/sd-image-variations-diffusers", | |
| required=True, | |
| help="Path to pretrained model or model identifier from huggingface.co/models.", | |
| ) | |
| parser.add_argument( | |
| "--revision", | |
| type=str, | |
| default=None, | |
| required=False, | |
| help=( | |
| "Revision of pretrained model identifier from huggingface.co/models. Trainable model components should be" | |
| " float32 precision." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--output_dir", | |
| type=str, | |
| default="eschernet-6dof", | |
| help="The output directory where the model predictions and checkpoints will be written.", | |
| ) | |
| parser.add_argument("--seed", type=int, default=42, help="A seed for reproducible training.") | |
| parser.add_argument( | |
| "--resolution", | |
| type=int, | |
| default=256, | |
| help=( | |
| "The resolution for input images, all the images in the train/validation dataset will be resized to this" | |
| " resolution" | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader." | |
| ) | |
| parser.add_argument("--num_train_epochs", type=int, default=1) | |
| parser.add_argument( | |
| "--T_in", type=int, default=1, help="Number of input views" | |
| ) | |
| parser.add_argument( | |
| "--T_in_val", type=int, default=10, help="Number of input views" | |
| ) | |
| parser.add_argument( | |
| "--T_out", type=int, default=1, help="Number of output views" | |
| ) | |
| parser.add_argument( | |
| "--max_train_steps", | |
| type=int, | |
| default=100000, | |
| help="Total number of training steps to perform. If provided, overrides num_train_epochs.", | |
| ) | |
| parser.add_argument( | |
| "--guidance_scale", | |
| type=float, | |
| default=3.0, | |
| help="unconditional guidance scale, if guidance_scale>1.0, do_classifier_free_guidance" | |
| ) | |
| parser.add_argument( | |
| "--conditioning_dropout_prob", | |
| type=float, | |
| default=0.05, | |
| help="Conditioning dropout probability. Drops out the conditionings (image and edit prompt) used in training InstructPix2Pix. See section 3.2.1 in the paper: https://arxiv.org/abs/2211.09800" | |
| ) | |
| parser.add_argument( | |
| "--checkpointing_steps", | |
| type=int, | |
| default=2000, | |
| help=( | |
| "Save a checkpoint of the training state every X updates. Checkpoints can be used for resuming training via `--resume_from_checkpoint`. " | |
| "In the case that the checkpoint is better than the final trained model, the checkpoint can also be used for inference." | |
| "Using a checkpoint for inference requires separate loading of the original pipeline and the individual checkpointed model components." | |
| "See https://huggingface.co/docs/diffusers/main/en/training/dreambooth#performing-inference-using-a-saved-checkpoint for step by step" | |
| "instructions." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--checkpoints_total_limit", | |
| type=int, | |
| default=20, | |
| help=("Max number of checkpoints to store."), | |
| ) | |
| parser.add_argument( | |
| "--resume_from_checkpoint", | |
| type=str, | |
| default=None, | |
| help=( | |
| "Whether training should be resumed from a previous checkpoint. Use a path saved by" | |
| ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--gradient_accumulation_steps", | |
| type=int, | |
| default=1, | |
| help="Number of updates steps to accumulate before performing a backward/update pass.", | |
| ) | |
| parser.add_argument( | |
| "--gradient_checkpointing", | |
| action="store_true", | |
| help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", | |
| ) | |
| parser.add_argument( | |
| "--learning_rate", | |
| type=float, | |
| default=1e-4, | |
| help="Initial learning rate (after the potential warmup period) to use.", | |
| ) | |
| parser.add_argument( | |
| "--scale_lr", | |
| action="store_true", | |
| default=False, | |
| help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", | |
| ) | |
| parser.add_argument( | |
| "--lr_warmup_steps", type=int, default=1000, help="Number of steps for the warmup in the lr scheduler." | |
| ) | |
| parser.add_argument( | |
| "--lr_num_cycles", | |
| type=int, | |
| default=1, | |
| help="Number of hard resets of the lr in cosine_with_restarts scheduler.", | |
| ) | |
| parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.") | |
| parser.add_argument( | |
| "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes." | |
| ) | |
| parser.add_argument( | |
| "--dataloader_num_workers", | |
| type=int, | |
| default=1, | |
| help=( | |
| "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." | |
| ), | |
| ) | |
| parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") | |
| parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") | |
| parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") | |
| parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") | |
| parser.add_argument("--max_grad_norm", default=0.5, type=float, help="Max gradient norm.") | |
| parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") | |
| parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") | |
| parser.add_argument( | |
| "--hub_model_id", | |
| type=str, | |
| default=None, | |
| help="The name of the repository to keep in sync with the local `output_dir`.", | |
| ) | |
| parser.add_argument( | |
| "--logging_dir", | |
| type=str, | |
| default="logs", | |
| help=( | |
| "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" | |
| " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--allow_tf32", | |
| action="store_true", | |
| help=( | |
| "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" | |
| " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--report_to", | |
| type=str, | |
| default="wandb", # log_image currently only for wandb | |
| help=( | |
| 'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' | |
| ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--mixed_precision", | |
| type=str, | |
| default=None, | |
| choices=["no", "fp16", "bf16"], | |
| help=( | |
| "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" | |
| " 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" | |
| " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--enable_xformers_memory_efficient_attention", default=True, help="Whether or not to use xformers." | |
| ) | |
| parser.add_argument( | |
| "--set_grads_to_none", | |
| default=True, | |
| help=( | |
| "Save more memory by using setting grads to None instead of zero. Be aware, that this changes certain" | |
| " behaviors, so disable this argument if it causes any problems. More info:" | |
| " https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html" | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--dataset_name", | |
| type=str, | |
| default=None, | |
| help=( | |
| "The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private," | |
| " dataset). It can also be a path pointing to a local copy of a dataset in your filesystem," | |
| " or to a folder containing files that 🤗 Datasets can understand." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--dataset_config_name", | |
| type=str, | |
| default=None, | |
| help="The config of the Dataset, leave as None if there's only one config.", | |
| ) | |
| parser.add_argument( | |
| "--train_data_dir", | |
| type=str, | |
| default=None, | |
| help=( | |
| "A folder containing the training data. Folder contents must follow the structure described in" | |
| " https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file" | |
| " must exist to provide the captions for the images. Ignored if `dataset_name` is specified." | |
| ), | |
| ) | |
| parser.add_argument("--use_ema", action="store_true", help="Whether to use EMA model.") | |
| parser.add_argument( | |
| "--num_validation_images", | |
| type=int, | |
| default=2, | |
| help="Number of images to be generated for each `--validation_image`, `--validation_prompt` pair", | |
| ) | |
| parser.add_argument( | |
| "--validation_steps", | |
| type=int, | |
| default=2000, | |
| help=( | |
| "Run validation every X steps. Validation consists of running the prompt" | |
| " `args.validation_prompt` multiple times: `args.num_validation_images`" | |
| " and logging the images." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--num_validation_batches", | |
| type=int, | |
| default=20, | |
| help=( | |
| "Number of batches to use for validation. If `None`, use all batches." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--tracker_project_name", | |
| type=str, | |
| default="train_zero123_hf", | |
| help=( | |
| "The `project_name` argument passed to Accelerator.init_trackers for" | |
| " more information see https://huggingface.co/docs/accelerate/v0.17.0/en/package_reference/accelerator#accelerate.Accelerator" | |
| ), | |
| ) | |
| if input_args is not None: | |
| args = parser.parse_args(input_args) | |
| else: | |
| args = parser.parse_args() | |
| if args.dataset_name is None and args.train_data_dir is None: | |
| raise ValueError("Specify either `--dataset_name` or `--train_data_dir`") | |
| if args.dataset_name is not None and args.train_data_dir is not None: | |
| raise ValueError("Specify only one of `--dataset_name` or `--train_data_dir`") | |
| if args.resolution % 8 != 0: | |
| raise ValueError( | |
| "`--resolution` must be divisible by 8 for consistently sized encoded images." | |
| ) | |
| return args | |
| ConvNextV2_preprocess = transforms.Compose([ | |
| transforms.Resize((224, 224), interpolation=transforms.InterpolationMode.BICUBIC), | |
| transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) | |
| ]) | |
| def _encode_image(feature_extractor, image_encoder, image, device, dtype, do_classifier_free_guidance): | |
| # [-1, 1] -> [0, 1] | |
| image = (image + 1.) / 2. | |
| image = ConvNextV2_preprocess(image) | |
| image_embeddings = image_encoder(image) # bt, 768, 12, 12 | |
| if do_classifier_free_guidance: | |
| negative_prompt_embeds = torch.zeros_like(image_embeddings) | |
| image_embeddings = torch.cat([negative_prompt_embeds, image_embeddings]) | |
| return image_embeddings #.detach() # !we need keep image encoder gradient | |
| def main(args): | |
| logging_dir = Path(args.output_dir, args.logging_dir) | |
| accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir) | |
| accelerator = Accelerator( | |
| gradient_accumulation_steps=args.gradient_accumulation_steps, | |
| mixed_precision=args.mixed_precision, | |
| log_with=args.report_to, | |
| project_config=accelerator_project_config, | |
| ) | |
| # Make one log on every process with the configuration for debugging. | |
| logging.basicConfig( | |
| format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
| datefmt="%m/%d/%Y %H:%M:%S", | |
| level=logging.INFO, | |
| ) | |
| logger.info(accelerator.state, main_process_only=False) | |
| if accelerator.is_local_main_process: | |
| transformers.utils.logging.set_verbosity_warning() | |
| diffusers.utils.logging.set_verbosity_info() | |
| else: | |
| transformers.utils.logging.set_verbosity_error() | |
| diffusers.utils.logging.set_verbosity_error() | |
| # If passed along, set the training seed now. | |
| if args.seed is not None: | |
| set_seed(args.seed) | |
| # Handle the repository creation | |
| if accelerator.is_main_process: | |
| if args.output_dir is not None: | |
| os.makedirs(args.output_dir, exist_ok=True) | |
| if args.push_to_hub: | |
| repo_id = create_repo( | |
| repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token, private=True | |
| ).repo_id | |
| # Load scheduler and models | |
| noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler", revision=args.revision) | |
| image_encoder = CN_encoder.from_pretrained("facebook/convnextv2-tiny-22k-224") | |
| feature_extractor = None | |
| vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision) | |
| unet = UNet2DConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision) | |
| T_in = args.T_in | |
| T_in_val = args.T_in_val | |
| T_out = args.T_out | |
| vae.eval() | |
| vae.requires_grad_(False) | |
| image_encoder.train() | |
| image_encoder.requires_grad_(True) | |
| unet.requires_grad_(True) | |
| unet.train() | |
| # Create EMA for the unet. | |
| if args.use_ema: | |
| ema_unet = EMAModel(unet.parameters(), model_cls=UNet2DConditionModel, model_config=unet.config) | |
| if args.enable_xformers_memory_efficient_attention: | |
| if is_xformers_available(): | |
| import xformers | |
| xformers_version = version.parse(xformers.__version__) | |
| if xformers_version == version.parse("0.0.16"): | |
| logger.warn( | |
| "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." | |
| ) | |
| unet.enable_xformers_memory_efficient_attention() | |
| vae.enable_slicing() | |
| else: | |
| raise ValueError("xformers is not available. Make sure it is installed correctly") | |
| if args.gradient_checkpointing: | |
| unet.enable_gradient_checkpointing() | |
| # Check that all trainable models are in full precision | |
| low_precision_error_string = ( | |
| " Please make sure to always have all model weights in full float32 precision when starting training - even if" | |
| " doing mixed precision training, copy of the weights should still be float32." | |
| ) | |
| if accelerator.unwrap_model(unet).dtype != torch.float32: | |
| raise ValueError( | |
| f"UNet loaded as datatype {accelerator.unwrap_model(unet).dtype}. {low_precision_error_string}" | |
| ) | |
| # Enable TF32 for faster training on Ampere GPUs, | |
| # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices | |
| if args.allow_tf32: | |
| torch.backends.cuda.matmul.allow_tf32 = True | |
| if args.scale_lr: | |
| args.learning_rate = ( | |
| args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes | |
| ) | |
| # Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs | |
| if args.use_8bit_adam: | |
| try: | |
| import bitsandbytes as bnb | |
| except ImportError: | |
| raise ImportError( | |
| "To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`." | |
| ) | |
| optimizer_class = bnb.optim.AdamW8bit | |
| else: | |
| optimizer_class = torch.optim.AdamW | |
| optimizer = optimizer_class( | |
| [{"params": unet.parameters(), "lr": args.learning_rate}, | |
| {"params": image_encoder.parameters(), "lr": args.learning_rate}], | |
| betas=(args.adam_beta1, args.adam_beta2), | |
| weight_decay=args.adam_weight_decay, | |
| eps=args.adam_epsilon | |
| ) | |
| # print model info, learnable parameters, non-learnable parameters, total parameters, model size, all in billion | |
| def print_model_info(model): | |
| print("="*20) | |
| # print model class name | |
| print("model name: ", type(model).__name__) | |
| print("learnable parameters(M): ", sum(p.numel() for p in model.parameters() if p.requires_grad) / 1e6) | |
| print("non-learnable parameters(M): ", sum(p.numel() for p in model.parameters() if not p.requires_grad) / 1e6) | |
| print("total parameters(M): ", sum(p.numel() for p in model.parameters()) / 1e6) | |
| print("model size(MB): ", sum(p.numel() * p.element_size() for p in model.parameters()) / 1024 / 1024) | |
| print_model_info(unet) | |
| print_model_info(vae) | |
| print_model_info(image_encoder) | |
| # Init Dataset | |
| image_transforms = torchvision.transforms.Compose( | |
| [ | |
| torchvision.transforms.Resize((args.resolution, args.resolution)), # 256, 256 | |
| transforms.ToTensor(), | |
| transforms.Normalize([0.5], [0.5]) | |
| ] | |
| ) | |
| train_dataset = ObjaverseData(root_dir=args.train_data_dir, image_transforms=image_transforms, validation=False, T_in=T_in, T_out=T_out) | |
| train_log_dataset = ObjaverseData(root_dir=args.train_data_dir, image_transforms=image_transforms, validation=False, T_in=T_in_val, T_out=T_out, fix_sample=True) | |
| validation_dataset = ObjaverseData(root_dir=args.train_data_dir, image_transforms=image_transforms, validation=True, T_in=T_in_val, T_out=T_out, fix_sample=True) | |
| # for training | |
| train_dataloader = torch.utils.data.DataLoader( | |
| train_dataset, | |
| shuffle=True, | |
| batch_size=args.train_batch_size, | |
| num_workers=args.dataloader_num_workers, | |
| ) | |
| # for validation set logs | |
| validation_dataloader = torch.utils.data.DataLoader( | |
| validation_dataset, | |
| shuffle=False, | |
| batch_size=1, | |
| num_workers=1, | |
| ) | |
| # for training set logs | |
| train_log_dataloader = torch.utils.data.DataLoader( | |
| train_log_dataset, | |
| shuffle=False, | |
| batch_size=1, | |
| num_workers=1, | |
| ) | |
| # Scheduler and math around the number of training steps. | |
| overrode_max_train_steps = False | |
| num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | |
| if args.max_train_steps is None: | |
| args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | |
| overrode_max_train_steps = True | |
| def warmup_lr_schedule(optimizer, step, max_step, init_lr, max_lr): | |
| """Warmup the learning rate""" | |
| lr = min(max_lr, init_lr + (max_lr - init_lr) * step / max_step) | |
| for param_group in optimizer.param_groups: | |
| param_group['lr'] = lr | |
| def cosine_lr_schedule(optimizer, epoch, max_epoch, init_lr, min_lr): | |
| """Decay the learning rate""" | |
| lr = (init_lr - min_lr) * 0.5 * (1. + math.cos(math.pi * epoch / max_epoch)) + min_lr | |
| for param_group in optimizer.param_groups: | |
| param_group['lr'] = lr | |
| # Prepare everything with our `accelerator`. | |
| unet, image_encoder, optimizer, train_dataloader, validation_dataloader, train_log_dataloader = accelerator.prepare( | |
| unet, image_encoder, optimizer, train_dataloader, validation_dataloader, train_log_dataloader | |
| ) | |
| if args.use_ema: | |
| ema_unet.to(accelerator.device) | |
| # For mixed precision training we cast the text_encoder and vae weights to half-precision | |
| # as these models are only used for inference, keeping weights in full precision is not required. | |
| weight_dtype = torch.float32 | |
| if accelerator.mixed_precision == "fp16": | |
| weight_dtype = torch.float16 | |
| elif accelerator.mixed_precision == "bf16": | |
| weight_dtype = torch.bfloat16 | |
| # Move vae, image_encoder to device and cast to weight_dtype | |
| vae.to(accelerator.device, dtype=weight_dtype) | |
| # We need to recalculate our total training steps as the size of the training dataloader may have changed. | |
| num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | |
| if overrode_max_train_steps: | |
| args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | |
| # Afterwards we recalculate our number of training epochs | |
| args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) | |
| # We need to initialize the trackers we use, and also store our configuration. | |
| # The trackers initializes automatically on the main process. | |
| if accelerator.is_main_process: | |
| tracker_config = dict(vars(args)) | |
| run_name = args.output_dir.split("logs_")[1] | |
| accelerator.init_trackers(args.tracker_project_name, config=tracker_config, init_kwargs={"wandb":{"name":run_name}}) | |
| # Train! | |
| total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps | |
| do_classifier_free_guidance = args.guidance_scale > 1.0 | |
| logger.info("***** Running training *****") | |
| logger.info(f" Num examples = {len(train_dataset)}") | |
| logger.info(f" Num batches each epoch = {len(train_dataloader)}") | |
| logger.info(f" Num Epochs = {args.num_train_epochs}") | |
| logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") | |
| logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") | |
| logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") | |
| logger.info(f" Total optimization steps = {args.max_train_steps}") | |
| logger.info(f" do_classifier_free_guidance = {do_classifier_free_guidance}") | |
| logger.info(f" conditioning_dropout_prob = {args.conditioning_dropout_prob}") | |
| global_step = 0 | |
| first_epoch = 0 | |
| # Potentially load in the weights and states from a previous save | |
| if args.resume_from_checkpoint: | |
| if args.resume_from_checkpoint != "latest": | |
| path = os.path.basename(args.resume_from_checkpoint) | |
| else: | |
| # Get the most recent checkpoint | |
| dirs = os.listdir(args.output_dir) | |
| dirs = [d for d in dirs if d.startswith("checkpoint")] | |
| dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) | |
| path = dirs[-1] if len(dirs) > 0 else None | |
| if path is None: | |
| accelerator.print( | |
| f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." | |
| ) | |
| args.resume_from_checkpoint = None | |
| initial_global_step = 0 | |
| else: | |
| accelerator.print(f"Resuming from checkpoint {path}") | |
| accelerator.load_state(os.path.join(args.output_dir, path)) | |
| global_step = int(path.split("-")[1]) | |
| initial_global_step = global_step | |
| first_epoch = global_step // num_update_steps_per_epoch | |
| else: | |
| initial_global_step = 0 | |
| progress_bar = tqdm( | |
| range(0, args.max_train_steps), | |
| initial=initial_global_step, | |
| desc="Steps", | |
| # Only show the progress bar once on each machine. | |
| disable=not accelerator.is_local_main_process, | |
| ) | |
| for epoch in range(first_epoch, args.num_train_epochs): | |
| loss_epoch = 0.0 | |
| num_train_elems = 0 | |
| for step, batch in enumerate(train_dataloader): | |
| with accelerator.accumulate(unet, image_encoder): | |
| gt_image = batch["image_target"].to(dtype=weight_dtype) # BxTx3xHxW | |
| gt_image = einops.rearrange(gt_image, 'b t c h w -> (b t) c h w', t=T_out) | |
| input_image = batch["image_input"].to(dtype=weight_dtype) # Bx3xHxW | |
| input_image = einops.rearrange(input_image, 'b t c h w -> (b t) c h w', t=T_in) | |
| pose_in = batch["pose_in"].to(dtype=weight_dtype) # BxTx4 | |
| pose_out = batch["pose_out"].to(dtype=weight_dtype) # BxTx4 | |
| pose_in_inv = batch["pose_in_inv"].to(dtype=weight_dtype) # BxTx4 | |
| pose_out_inv = batch["pose_out_inv"].to(dtype=weight_dtype) # BxTx4 | |
| gt_latents = vae.encode(gt_image).latent_dist.sample().detach() | |
| gt_latents = gt_latents * vae.config.scaling_factor # follow zero123, only target image latent is scaled | |
| # Sample noise that we'll add to the latents | |
| bsz = gt_latents.shape[0] // T_out | |
| noise = torch.randn_like(gt_latents) | |
| # Sample a random timestep for each image | |
| timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=gt_latents.device) | |
| timesteps = timesteps.long() | |
| timesteps = einops.repeat(timesteps, 'b -> (b t)', t=T_out) | |
| # Add noise to the latents according to the noise magnitude at each timestep | |
| # (this is the forward diffusion process) | |
| noisy_latents = noise_scheduler.add_noise(gt_latents.to(dtype=torch.float32), noise.to(dtype=torch.float32), timesteps).to(dtype=gt_latents.dtype) | |
| if do_classifier_free_guidance: #support classifier-free guidance, randomly drop out 5% | |
| # Conditioning dropout to support classifier-free guidance during inference. For more details | |
| # check out the section 3.2.1 of the original paper https://arxiv.org/abs/2211.09800. | |
| random_p = torch.rand(bsz, device=gt_latents.device) | |
| # Sample masks for the edit prompts. | |
| prompt_mask = random_p < 2 * args.conditioning_dropout_prob | |
| prompt_mask = prompt_mask.reshape(bsz, 1, 1, 1) | |
| img_prompt_embeds = _encode_image(feature_extractor, image_encoder, input_image, gt_latents.device, gt_latents.dtype, False) | |
| # Final text conditioning. | |
| img_prompt_embeds = einops.rearrange(img_prompt_embeds, '(b t) l c -> b t l c', t=T_in) | |
| null_conditioning = torch.zeros_like(img_prompt_embeds).detach() | |
| img_prompt_embeds = torch.where(prompt_mask, null_conditioning, img_prompt_embeds) | |
| img_prompt_embeds = einops.rearrange(img_prompt_embeds, 'b t l c -> (b t) l c', t=T_in) | |
| prompt_embeds = torch.cat([img_prompt_embeds], dim=-1) | |
| else: | |
| # Get the image_with_pose embedding for conditioning | |
| prompt_embeds = _encode_image(feature_extractor, image_encoder, input_image, gt_latents.device, gt_latents.dtype, False) | |
| prompt_embeds = einops.rearrange(prompt_embeds, '(b t) l c -> b (t l) c', t=T_in) | |
| # noisy_latents (b T_out) | |
| latent_model_input = torch.cat([noisy_latents], dim=1) | |
| # Predict the noise residual | |
| model_pred = unet( | |
| latent_model_input, | |
| timesteps, | |
| encoder_hidden_states=prompt_embeds, # (bxT_in) l 768 | |
| pose=[[pose_out, pose_out_inv], [pose_in, pose_in_inv]], # (bxT_in) 4, pose_out - self-attn, pose_in - cross-attn | |
| ).sample | |
| # Get the target for loss depending on the prediction type | |
| if noise_scheduler.config.prediction_type == "epsilon": | |
| target = noise | |
| elif noise_scheduler.config.prediction_type == "v_prediction": | |
| target = noise_scheduler.get_velocity(gt_latents, noise, timesteps) | |
| else: | |
| raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") | |
| loss = F.mse_loss(model_pred.float(), target.float(), reduction="none") | |
| loss = (loss.mean([1, 2, 3])).mean() | |
| accelerator.backward(loss) | |
| if accelerator.sync_gradients: | |
| params_to_clip = itertools.chain(unet.parameters(), image_encoder.parameters()) | |
| accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm) | |
| optimizer.step() | |
| # cosine | |
| if global_step <= args.lr_warmup_steps: | |
| warmup_lr_schedule(optimizer, global_step, args.lr_warmup_steps, 1e-5, args.learning_rate) | |
| else: | |
| cosine_lr_schedule(optimizer, global_step, args.max_train_steps, args.learning_rate, 1e-5) | |
| optimizer.zero_grad(set_to_none=args.set_grads_to_none) | |
| # Checks if the accelerator has performed an optimization step behind the scenes | |
| if accelerator.sync_gradients: | |
| if args.use_ema: | |
| ema_unet.step(unet.parameters()) | |
| progress_bar.update(1) | |
| global_step += 1 | |
| if accelerator.is_main_process: | |
| if global_step % args.checkpointing_steps == 0: | |
| # _before_ saving state, check if this save would set us over the `checkpoints_total_limit` | |
| if args.checkpoints_total_limit is not None: | |
| checkpoints = os.listdir(args.output_dir) | |
| checkpoints = [d for d in checkpoints if d.startswith("checkpoint")] | |
| checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1])) | |
| # before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints | |
| if len(checkpoints) >= args.checkpoints_total_limit: | |
| num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1 | |
| removing_checkpoints = checkpoints[0:num_to_remove] | |
| logger.info( | |
| f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints" | |
| ) | |
| logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}") | |
| for removing_checkpoint in removing_checkpoints: | |
| removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint) | |
| shutil.rmtree(removing_checkpoint) | |
| save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") | |
| accelerator.save_state(save_path) | |
| logger.info(f"Saved state to {save_path}") | |
| # save pipeline | |
| # _before_ saving state, check if this save would set us over the `checkpoints_total_limit` | |
| if args.checkpoints_total_limit is not None: | |
| pipelines = os.listdir(args.output_dir) | |
| pipelines = [d for d in pipelines if d.startswith("pipeline")] | |
| pipelines = sorted(pipelines, key=lambda x: int(x.split("-")[1])) | |
| # before we save the new pipeline, we need to have at _most_ `checkpoints_total_limit - 1` pipeline | |
| if len(pipelines) >= args.checkpoints_total_limit: | |
| num_to_remove = len(pipelines) - args.checkpoints_total_limit + 1 | |
| removing_pipelines = pipelines[0:num_to_remove] | |
| logger.info( | |
| f"{len(pipelines)} pipelines already exist, removing {len(removing_pipelines)} pipelines" | |
| ) | |
| logger.info(f"removing pipelines: {', '.join(removing_pipelines)}") | |
| for removing_pipeline in removing_pipelines: | |
| removing_pipeline = os.path.join(args.output_dir, removing_pipeline) | |
| shutil.rmtree(removing_pipeline) | |
| if args.use_ema: | |
| # Store the UNet parameters temporarily and load the EMA parameters to perform inference. | |
| ema_unet.store(unet.parameters()) | |
| ema_unet.copy_to(unet.parameters()) | |
| pipeline = Zero1to3StableDiffusionPipeline.from_pretrained( | |
| args.pretrained_model_name_or_path, | |
| vae=accelerator.unwrap_model(vae), | |
| image_encoder=accelerator.unwrap_model(image_encoder), | |
| feature_extractor=feature_extractor, | |
| unet=accelerator.unwrap_model(unet), | |
| scheduler=noise_scheduler, | |
| safety_checker=None, | |
| torch_dtype=torch.float32, | |
| ) | |
| pipeline_save_path = os.path.join(args.output_dir, f"pipeline-{global_step}") | |
| pipeline.save_pretrained(pipeline_save_path) | |
| # del pipeline | |
| if args.push_to_hub: | |
| print("Pushing to the hub ", repo_id) | |
| upload_folder( | |
| repo_id=repo_id, | |
| folder_path=pipeline_save_path, | |
| commit_message=global_step, | |
| ignore_patterns=["step_*", "epoch_*"], | |
| run_as_future=True, | |
| ) | |
| if args.use_ema: | |
| # Switch back to the original UNet parameters. | |
| ema_unet.restore(unet.parameters()) | |
| if validation_dataloader is not None and global_step % args.validation_steps == 0: | |
| if args.use_ema: | |
| # Store the UNet parameters temporarily and load the EMA parameters to perform inference. | |
| ema_unet.store(unet.parameters()) | |
| ema_unet.copy_to(unet.parameters()) | |
| image_logs = log_validation( | |
| validation_dataloader, | |
| vae, | |
| image_encoder, | |
| feature_extractor, | |
| unet, | |
| args, | |
| accelerator, | |
| weight_dtype, | |
| 'val', | |
| ) | |
| if args.use_ema: | |
| # Switch back to the original UNet parameters. | |
| ema_unet.restore(unet.parameters()) | |
| if train_log_dataloader is not None and (global_step % args.validation_steps == 0 or global_step == 1): | |
| if args.use_ema: | |
| # Store the UNet parameters temporarily and load the EMA parameters to perform inference. | |
| ema_unet.store(unet.parameters()) | |
| ema_unet.copy_to(unet.parameters()) | |
| train_image_logs = log_validation( | |
| train_log_dataloader, | |
| vae, | |
| image_encoder, | |
| feature_extractor, | |
| unet, | |
| args, | |
| accelerator, | |
| weight_dtype, | |
| 'train', | |
| ) | |
| if args.use_ema: | |
| # Switch back to the original UNet parameters. | |
| ema_unet.restore(unet.parameters()) | |
| loss_epoch += loss.detach().item() | |
| num_train_elems += 1 | |
| logs = {"loss": loss.detach().item(), "lr": optimizer.param_groups[0]['lr'], | |
| "loss_epoch": loss_epoch / num_train_elems, | |
| "epoch": epoch} | |
| progress_bar.set_postfix(**logs) | |
| accelerator.log(logs, step=global_step) | |
| if global_step >= args.max_train_steps: | |
| break | |
| # Create the pipeline using using the trained modules and save it. | |
| accelerator.wait_for_everyone() | |
| if accelerator.is_main_process: | |
| unet = accelerator.unwrap_model(unet) | |
| if args.use_ema: | |
| ema_unet.copy_to(unet.parameters()) | |
| pipeline = Zero1to3StableDiffusionPipeline.from_pretrained( | |
| args.pretrained_model_name_or_path, | |
| vae=accelerator.unwrap_model(vae), | |
| image_encoder=accelerator.unwrap_model(image_encoder), | |
| feature_extractor=feature_extractor, | |
| unet=unet, | |
| scheduler=noise_scheduler, | |
| safety_checker=None, | |
| torch_dtype=torch.float32, | |
| ) | |
| pipeline_save_path = os.path.join(args.output_dir, f"pipeline-{global_step}") | |
| pipeline.save_pretrained(pipeline_save_path) | |
| if args.push_to_hub: | |
| upload_folder( | |
| repo_id=repo_id, | |
| folder_path=pipeline_save_path, | |
| commit_message="End of training", | |
| ignore_patterns=["step_*", "epoch_*"], | |
| ) | |
| accelerator.end_training() | |
| if __name__ == "__main__": | |
| # torch.multiprocessing.set_sharing_strategy("file_system") | |
| args = parse_args() | |
| main(args) | |