Spaces:
Runtime error
Runtime error
| # Copyright 2023 TSAIL Team and The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # DISCLAIMER: check https://arxiv.org/abs/2302.04867 and https://github.com/wl-zhao/UniPC for more info | |
| # The codebase is modified based on https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py | |
| import math | |
| from typing import List, Optional, Tuple, Union | |
| import numpy as np | |
| import torch | |
| from ..configuration_utils import ConfigMixin, register_to_config | |
| from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput | |
| def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999): | |
| """ | |
| Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of | |
| (1-beta) over time from t = [0,1]. | |
| Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up | |
| to that part of the diffusion process. | |
| Args: | |
| num_diffusion_timesteps (`int`): the number of betas to produce. | |
| max_beta (`float`): the maximum beta to use; use values lower than 1 to | |
| prevent singularities. | |
| Returns: | |
| betas (`np.ndarray`): the betas used by the scheduler to step the model outputs | |
| """ | |
| def alpha_bar(time_step): | |
| return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2 | |
| betas = [] | |
| for i in range(num_diffusion_timesteps): | |
| t1 = i / num_diffusion_timesteps | |
| t2 = (i + 1) / num_diffusion_timesteps | |
| betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) | |
| return torch.tensor(betas, dtype=torch.float32) | |
| class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin): | |
| """ | |
| UniPC is a training-free framework designed for the fast sampling of diffusion models, which consists of a | |
| corrector (UniC) and a predictor (UniP) that share a unified analytical form and support arbitrary orders. UniPC is | |
| by desinged model-agnostic, supporting pixel-space/latent-space DPMs on unconditional/conditional sampling. It can | |
| also be applied to both noise prediction model and data prediction model. The corrector UniC can be also applied | |
| after any off-the-shelf solvers to increase the order of accuracy. | |
| For more details, see the original paper: https://arxiv.org/abs/2302.04867 | |
| Currently, we support the multistep UniPC for both noise prediction models and data prediction models. We recommend | |
| to use `solver_order=2` for guided sampling, and `solver_order=3` for unconditional sampling. | |
| We also support the "dynamic thresholding" method in Imagen (https://arxiv.org/abs/2205.11487). For pixel-space | |
| diffusion models, you can set both `predict_x0=True` and `thresholding=True` to use the dynamic thresholding. Note | |
| that the thresholding method is unsuitable for latent-space diffusion models (such as stable-diffusion). | |
| [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` | |
| function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`. | |
| [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and | |
| [`~SchedulerMixin.from_pretrained`] functions. | |
| Args: | |
| num_train_timesteps (`int`): number of diffusion steps used to train the model. | |
| beta_start (`float`): the starting `beta` value of inference. | |
| beta_end (`float`): the final `beta` value. | |
| beta_schedule (`str`): | |
| the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from | |
| `linear`, `scaled_linear`, or `squaredcos_cap_v2`. | |
| trained_betas (`np.ndarray`, optional): | |
| option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc. | |
| solver_order (`int`, default `2`): | |
| the order of UniPC, also the p in UniPC-p; can be any positive integer. Note that the effective order of | |
| accuracy is `solver_order + 1` due to the UniC. We recommend to use `solver_order=2` for guided sampling, | |
| and `solver_order=3` for unconditional sampling. | |
| prediction_type (`str`, default `epsilon`, optional): | |
| prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion | |
| process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4 | |
| https://imagen.research.google/video/paper.pdf) | |
| thresholding (`bool`, default `False`): | |
| whether to use the "dynamic thresholding" method (introduced by Imagen, https://arxiv.org/abs/2205.11487). | |
| For pixel-space diffusion models, you can set both `predict_x0=True` and `thresholding=True` to use the | |
| dynamic thresholding. Note that the thresholding method is unsuitable for latent-space diffusion models | |
| (such as stable-diffusion). | |
| dynamic_thresholding_ratio (`float`, default `0.995`): | |
| the ratio for the dynamic thresholding method. Default is `0.995`, the same as Imagen | |
| (https://arxiv.org/abs/2205.11487). | |
| sample_max_value (`float`, default `1.0`): | |
| the threshold value for dynamic thresholding. Valid only when `thresholding=True` and `predict_x0=True`. | |
| predict_x0 (`bool`, default `True`): | |
| whether to use the updating algrithm on the predicted x0. See https://arxiv.org/abs/2211.01095 for details | |
| solver_type (`str`, default `bh2`): | |
| the solver type of UniPC. We recommend use `bh1` for unconditional sampling when steps < 10, and use `bh2` | |
| otherwise. | |
| lower_order_final (`bool`, default `True`): | |
| whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. We empirically | |
| find this trick can stabilize the sampling of DPM-Solver for steps < 15, especially for steps <= 10. | |
| disable_corrector (`list`, default `[]`): | |
| decide which step to disable the corrector. For large guidance scale, the misalignment between the | |
| `epsilon_theta(x_t, c)`and `epsilon_theta(x_t^c, c)` might influence the convergence. This can be mitigated | |
| by disable the corrector at the first few steps (e.g., disable_corrector=[0]) | |
| solver_p (`SchedulerMixin`, default `None`): | |
| can be any other scheduler. If specified, the algorithm will become solver_p + UniC. | |
| use_karras_sigmas (`bool`, *optional*, defaults to `False`): | |
| This parameter controls whether to use Karras sigmas (Karras et al. (2022) scheme) for step sizes in the | |
| noise schedule during the sampling process. If True, the sigmas will be determined according to a sequence | |
| of noise levels {σi} as defined in Equation (5) of the paper https://arxiv.org/pdf/2206.00364.pdf. | |
| timestep_spacing (`str`, default `"linspace"`): | |
| The way the timesteps should be scaled. Refer to Table 2. of [Common Diffusion Noise Schedules and Sample | |
| Steps are Flawed](https://arxiv.org/abs/2305.08891) for more information. | |
| steps_offset (`int`, default `0`): | |
| an offset added to the inference steps. You can use a combination of `offset=1` and | |
| `set_alpha_to_one=False`, to make the last step use step 0 for the previous alpha product, as done in | |
| stable diffusion. | |
| """ | |
| _compatibles = [e.name for e in KarrasDiffusionSchedulers] | |
| order = 1 | |
| def __init__( | |
| self, | |
| num_train_timesteps: int = 1000, | |
| beta_start: float = 0.0001, | |
| beta_end: float = 0.02, | |
| beta_schedule: str = "linear", | |
| trained_betas: Optional[Union[np.ndarray, List[float]]] = None, | |
| solver_order: int = 2, | |
| prediction_type: str = "epsilon", | |
| thresholding: bool = False, | |
| dynamic_thresholding_ratio: float = 0.995, | |
| sample_max_value: float = 1.0, | |
| predict_x0: bool = True, | |
| solver_type: str = "bh2", | |
| lower_order_final: bool = True, | |
| disable_corrector: List[int] = [], | |
| solver_p: SchedulerMixin = None, | |
| use_karras_sigmas: Optional[bool] = False, | |
| timestep_spacing: str = "linspace", | |
| steps_offset: int = 0, | |
| ): | |
| if trained_betas is not None: | |
| self.betas = torch.tensor(trained_betas, dtype=torch.float32) | |
| elif beta_schedule == "linear": | |
| self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) | |
| elif beta_schedule == "scaled_linear": | |
| # this schedule is very specific to the latent diffusion model. | |
| self.betas = ( | |
| torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2 | |
| ) | |
| elif beta_schedule == "squaredcos_cap_v2": | |
| # Glide cosine schedule | |
| self.betas = betas_for_alpha_bar(num_train_timesteps) | |
| else: | |
| raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}") | |
| self.alphas = 1.0 - self.betas | |
| self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) | |
| # Currently we only support VP-type noise schedule | |
| self.alpha_t = torch.sqrt(self.alphas_cumprod) | |
| self.sigma_t = torch.sqrt(1 - self.alphas_cumprod) | |
| self.lambda_t = torch.log(self.alpha_t) - torch.log(self.sigma_t) | |
| # standard deviation of the initial noise distribution | |
| self.init_noise_sigma = 1.0 | |
| if solver_type not in ["bh1", "bh2"]: | |
| if solver_type in ["midpoint", "heun", "logrho"]: | |
| self.register_to_config(solver_type="bh2") | |
| else: | |
| raise NotImplementedError(f"{solver_type} does is not implemented for {self.__class__}") | |
| self.predict_x0 = predict_x0 | |
| # setable values | |
| self.num_inference_steps = None | |
| timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=np.float32)[::-1].copy() | |
| self.timesteps = torch.from_numpy(timesteps) | |
| self.model_outputs = [None] * solver_order | |
| self.timestep_list = [None] * solver_order | |
| self.lower_order_nums = 0 | |
| self.disable_corrector = disable_corrector | |
| self.solver_p = solver_p | |
| self.last_sample = None | |
| def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None): | |
| """ | |
| Sets the timesteps used for the diffusion chain. Supporting function to be run before inference. | |
| Args: | |
| num_inference_steps (`int`): | |
| the number of diffusion steps used when generating samples with a pre-trained model. | |
| device (`str` or `torch.device`, optional): | |
| the device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | |
| """ | |
| # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 | |
| if self.config.timestep_spacing == "linspace": | |
| timesteps = ( | |
| np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps + 1) | |
| .round()[::-1][:-1] | |
| .copy() | |
| .astype(np.int64) | |
| ) | |
| elif self.config.timestep_spacing == "leading": | |
| step_ratio = self.config.num_train_timesteps // (num_inference_steps + 1) | |
| # creates integer timesteps by multiplying by ratio | |
| # casting to int to avoid issues when num_inference_step is power of 3 | |
| timesteps = (np.arange(0, num_inference_steps + 1) * step_ratio).round()[::-1][:-1].copy().astype(np.int64) | |
| timesteps += self.config.steps_offset | |
| elif self.config.timestep_spacing == "trailing": | |
| step_ratio = self.config.num_train_timesteps / num_inference_steps | |
| # creates integer timesteps by multiplying by ratio | |
| # casting to int to avoid issues when num_inference_step is power of 3 | |
| timesteps = np.arange(self.config.num_train_timesteps, 0, -step_ratio).round().copy().astype(np.int64) | |
| timesteps -= 1 | |
| else: | |
| raise ValueError( | |
| f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'." | |
| ) | |
| sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) | |
| if self.config.use_karras_sigmas: | |
| log_sigmas = np.log(sigmas) | |
| sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps) | |
| timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round() | |
| timesteps = np.flip(timesteps).copy().astype(np.int64) | |
| self.sigmas = torch.from_numpy(sigmas) | |
| # when num_inference_steps == num_train_timesteps, we can end up with | |
| # duplicates in timesteps. | |
| _, unique_indices = np.unique(timesteps, return_index=True) | |
| timesteps = timesteps[np.sort(unique_indices)] | |
| self.timesteps = torch.from_numpy(timesteps).to(device) | |
| self.num_inference_steps = len(timesteps) | |
| self.model_outputs = [ | |
| None, | |
| ] * self.config.solver_order | |
| self.lower_order_nums = 0 | |
| self.last_sample = None | |
| if self.solver_p: | |
| self.solver_p.set_timesteps(self.num_inference_steps, device=device) | |
| # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample | |
| def _threshold_sample(self, sample: torch.FloatTensor) -> torch.FloatTensor: | |
| """ | |
| "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the | |
| prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by | |
| s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing | |
| pixels from saturation at each step. We find that dynamic thresholding results in significantly better | |
| photorealism as well as better image-text alignment, especially when using very large guidance weights." | |
| https://arxiv.org/abs/2205.11487 | |
| """ | |
| dtype = sample.dtype | |
| batch_size, channels, height, width = sample.shape | |
| if dtype not in (torch.float32, torch.float64): | |
| sample = sample.float() # upcast for quantile calculation, and clamp not implemented for cpu half | |
| # Flatten sample for doing quantile calculation along each image | |
| sample = sample.reshape(batch_size, channels * height * width) | |
| abs_sample = sample.abs() # "a certain percentile absolute pixel value" | |
| s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1) | |
| s = torch.clamp( | |
| s, min=1, max=self.config.sample_max_value | |
| ) # When clamped to min=1, equivalent to standard clipping to [-1, 1] | |
| s = s.unsqueeze(1) # (batch_size, 1) because clamp will broadcast along dim=0 | |
| sample = torch.clamp(sample, -s, s) / s # "we threshold xt0 to the range [-s, s] and then divide by s" | |
| sample = sample.reshape(batch_size, channels, height, width) | |
| sample = sample.to(dtype) | |
| return sample | |
| def convert_model_output( | |
| self, model_output: torch.FloatTensor, timestep: int, sample: torch.FloatTensor | |
| ) -> torch.FloatTensor: | |
| r""" | |
| Convert the model output to the corresponding type that the algorithm PC needs. | |
| Args: | |
| model_output (`torch.FloatTensor`): direct output from learned diffusion model. | |
| timestep (`int`): current discrete timestep in the diffusion chain. | |
| sample (`torch.FloatTensor`): | |
| current instance of sample being created by diffusion process. | |
| Returns: | |
| `torch.FloatTensor`: the converted model output. | |
| """ | |
| if self.predict_x0: | |
| if self.config.prediction_type == "epsilon": | |
| alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep] | |
| x0_pred = (sample - sigma_t * model_output) / alpha_t | |
| elif self.config.prediction_type == "sample": | |
| x0_pred = model_output | |
| elif self.config.prediction_type == "v_prediction": | |
| alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep] | |
| x0_pred = alpha_t * sample - sigma_t * model_output | |
| else: | |
| raise ValueError( | |
| f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or" | |
| " `v_prediction` for the UniPCMultistepScheduler." | |
| ) | |
| if self.config.thresholding: | |
| x0_pred = self._threshold_sample(x0_pred) | |
| return x0_pred | |
| else: | |
| if self.config.prediction_type == "epsilon": | |
| return model_output | |
| elif self.config.prediction_type == "sample": | |
| alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep] | |
| epsilon = (sample - alpha_t * model_output) / sigma_t | |
| return epsilon | |
| elif self.config.prediction_type == "v_prediction": | |
| alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep] | |
| epsilon = alpha_t * model_output + sigma_t * sample | |
| return epsilon | |
| else: | |
| raise ValueError( | |
| f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or" | |
| " `v_prediction` for the UniPCMultistepScheduler." | |
| ) | |
| def multistep_uni_p_bh_update( | |
| self, | |
| model_output: torch.FloatTensor, | |
| prev_timestep: int, | |
| sample: torch.FloatTensor, | |
| order: int, | |
| ) -> torch.FloatTensor: | |
| """ | |
| One step for the UniP (B(h) version). Alternatively, `self.solver_p` is used if is specified. | |
| Args: | |
| model_output (`torch.FloatTensor`): | |
| direct outputs from learned diffusion model at the current timestep. | |
| prev_timestep (`int`): previous discrete timestep in the diffusion chain. | |
| sample (`torch.FloatTensor`): | |
| current instance of sample being created by diffusion process. | |
| order (`int`): the order of UniP at this step, also the p in UniPC-p. | |
| Returns: | |
| `torch.FloatTensor`: the sample tensor at the previous timestep. | |
| """ | |
| timestep_list = self.timestep_list | |
| model_output_list = self.model_outputs | |
| s0, t = self.timestep_list[-1], prev_timestep | |
| m0 = model_output_list[-1] | |
| x = sample | |
| if self.solver_p: | |
| x_t = self.solver_p.step(model_output, s0, x).prev_sample | |
| return x_t | |
| lambda_t, lambda_s0 = self.lambda_t[t], self.lambda_t[s0] | |
| alpha_t, alpha_s0 = self.alpha_t[t], self.alpha_t[s0] | |
| sigma_t, sigma_s0 = self.sigma_t[t], self.sigma_t[s0] | |
| h = lambda_t - lambda_s0 | |
| device = sample.device | |
| rks = [] | |
| D1s = [] | |
| for i in range(1, order): | |
| si = timestep_list[-(i + 1)] | |
| mi = model_output_list[-(i + 1)] | |
| lambda_si = self.lambda_t[si] | |
| rk = (lambda_si - lambda_s0) / h | |
| rks.append(rk) | |
| D1s.append((mi - m0) / rk) | |
| rks.append(1.0) | |
| rks = torch.tensor(rks, device=device) | |
| R = [] | |
| b = [] | |
| hh = -h if self.predict_x0 else h | |
| h_phi_1 = torch.expm1(hh) # h\phi_1(h) = e^h - 1 | |
| h_phi_k = h_phi_1 / hh - 1 | |
| factorial_i = 1 | |
| if self.config.solver_type == "bh1": | |
| B_h = hh | |
| elif self.config.solver_type == "bh2": | |
| B_h = torch.expm1(hh) | |
| else: | |
| raise NotImplementedError() | |
| for i in range(1, order + 1): | |
| R.append(torch.pow(rks, i - 1)) | |
| b.append(h_phi_k * factorial_i / B_h) | |
| factorial_i *= i + 1 | |
| h_phi_k = h_phi_k / hh - 1 / factorial_i | |
| R = torch.stack(R) | |
| b = torch.tensor(b, device=device) | |
| if len(D1s) > 0: | |
| D1s = torch.stack(D1s, dim=1) # (B, K) | |
| # for order 2, we use a simplified version | |
| if order == 2: | |
| rhos_p = torch.tensor([0.5], dtype=x.dtype, device=device) | |
| else: | |
| rhos_p = torch.linalg.solve(R[:-1, :-1], b[:-1]) | |
| else: | |
| D1s = None | |
| if self.predict_x0: | |
| x_t_ = sigma_t / sigma_s0 * x - alpha_t * h_phi_1 * m0 | |
| if D1s is not None: | |
| pred_res = torch.einsum("k,bkchw->bchw", rhos_p, D1s) | |
| else: | |
| pred_res = 0 | |
| x_t = x_t_ - alpha_t * B_h * pred_res | |
| else: | |
| x_t_ = alpha_t / alpha_s0 * x - sigma_t * h_phi_1 * m0 | |
| if D1s is not None: | |
| pred_res = torch.einsum("k,bkchw->bchw", rhos_p, D1s) | |
| else: | |
| pred_res = 0 | |
| x_t = x_t_ - sigma_t * B_h * pred_res | |
| x_t = x_t.to(x.dtype) | |
| return x_t | |
| def multistep_uni_c_bh_update( | |
| self, | |
| this_model_output: torch.FloatTensor, | |
| this_timestep: int, | |
| last_sample: torch.FloatTensor, | |
| this_sample: torch.FloatTensor, | |
| order: int, | |
| ) -> torch.FloatTensor: | |
| """ | |
| One step for the UniC (B(h) version). | |
| Args: | |
| this_model_output (`torch.FloatTensor`): the model outputs at `x_t` | |
| this_timestep (`int`): the current timestep `t` | |
| last_sample (`torch.FloatTensor`): the generated sample before the last predictor: `x_{t-1}` | |
| this_sample (`torch.FloatTensor`): the generated sample after the last predictor: `x_{t}` | |
| order (`int`): the `p` of UniC-p at this step. Note that the effective order of accuracy | |
| should be order + 1 | |
| Returns: | |
| `torch.FloatTensor`: the corrected sample tensor at the current timestep. | |
| """ | |
| timestep_list = self.timestep_list | |
| model_output_list = self.model_outputs | |
| s0, t = timestep_list[-1], this_timestep | |
| m0 = model_output_list[-1] | |
| x = last_sample | |
| x_t = this_sample | |
| model_t = this_model_output | |
| lambda_t, lambda_s0 = self.lambda_t[t], self.lambda_t[s0] | |
| alpha_t, alpha_s0 = self.alpha_t[t], self.alpha_t[s0] | |
| sigma_t, sigma_s0 = self.sigma_t[t], self.sigma_t[s0] | |
| h = lambda_t - lambda_s0 | |
| device = this_sample.device | |
| rks = [] | |
| D1s = [] | |
| for i in range(1, order): | |
| si = timestep_list[-(i + 1)] | |
| mi = model_output_list[-(i + 1)] | |
| lambda_si = self.lambda_t[si] | |
| rk = (lambda_si - lambda_s0) / h | |
| rks.append(rk) | |
| D1s.append((mi - m0) / rk) | |
| rks.append(1.0) | |
| rks = torch.tensor(rks, device=device) | |
| R = [] | |
| b = [] | |
| hh = -h if self.predict_x0 else h | |
| h_phi_1 = torch.expm1(hh) # h\phi_1(h) = e^h - 1 | |
| h_phi_k = h_phi_1 / hh - 1 | |
| factorial_i = 1 | |
| if self.config.solver_type == "bh1": | |
| B_h = hh | |
| elif self.config.solver_type == "bh2": | |
| B_h = torch.expm1(hh) | |
| else: | |
| raise NotImplementedError() | |
| for i in range(1, order + 1): | |
| R.append(torch.pow(rks, i - 1)) | |
| b.append(h_phi_k * factorial_i / B_h) | |
| factorial_i *= i + 1 | |
| h_phi_k = h_phi_k / hh - 1 / factorial_i | |
| R = torch.stack(R) | |
| b = torch.tensor(b, device=device) | |
| if len(D1s) > 0: | |
| D1s = torch.stack(D1s, dim=1) | |
| else: | |
| D1s = None | |
| # for order 1, we use a simplified version | |
| if order == 1: | |
| rhos_c = torch.tensor([0.5], dtype=x.dtype, device=device) | |
| else: | |
| rhos_c = torch.linalg.solve(R, b) | |
| if self.predict_x0: | |
| x_t_ = sigma_t / sigma_s0 * x - alpha_t * h_phi_1 * m0 | |
| if D1s is not None: | |
| corr_res = torch.einsum("k,bkchw->bchw", rhos_c[:-1], D1s) | |
| else: | |
| corr_res = 0 | |
| D1_t = model_t - m0 | |
| x_t = x_t_ - alpha_t * B_h * (corr_res + rhos_c[-1] * D1_t) | |
| else: | |
| x_t_ = alpha_t / alpha_s0 * x - sigma_t * h_phi_1 * m0 | |
| if D1s is not None: | |
| corr_res = torch.einsum("k,bkchw->bchw", rhos_c[:-1], D1s) | |
| else: | |
| corr_res = 0 | |
| D1_t = model_t - m0 | |
| x_t = x_t_ - sigma_t * B_h * (corr_res + rhos_c[-1] * D1_t) | |
| x_t = x_t.to(x.dtype) | |
| return x_t | |
| def step( | |
| self, | |
| model_output: torch.FloatTensor, | |
| timestep: int, | |
| sample: torch.FloatTensor, | |
| return_dict: bool = True, | |
| ) -> Union[SchedulerOutput, Tuple]: | |
| """ | |
| Step function propagating the sample with the multistep UniPC. | |
| Args: | |
| model_output (`torch.FloatTensor`): direct output from learned diffusion model. | |
| timestep (`int`): current discrete timestep in the diffusion chain. | |
| sample (`torch.FloatTensor`): | |
| current instance of sample being created by diffusion process. | |
| return_dict (`bool`): option for returning tuple rather than SchedulerOutput class | |
| Returns: | |
| [`~scheduling_utils.SchedulerOutput`] or `tuple`: [`~scheduling_utils.SchedulerOutput`] if `return_dict` is | |
| True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. | |
| """ | |
| if self.num_inference_steps is None: | |
| raise ValueError( | |
| "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" | |
| ) | |
| if isinstance(timestep, torch.Tensor): | |
| timestep = timestep.to(self.timesteps.device) | |
| step_index = (self.timesteps == timestep).nonzero() | |
| if len(step_index) == 0: | |
| step_index = len(self.timesteps) - 1 | |
| else: | |
| step_index = step_index.item() | |
| use_corrector = ( | |
| step_index > 0 and step_index - 1 not in self.disable_corrector and self.last_sample is not None | |
| ) | |
| model_output_convert = self.convert_model_output(model_output, timestep, sample) | |
| if use_corrector: | |
| sample = self.multistep_uni_c_bh_update( | |
| this_model_output=model_output_convert, | |
| this_timestep=timestep, | |
| last_sample=self.last_sample, | |
| this_sample=sample, | |
| order=self.this_order, | |
| ) | |
| # now prepare to run the predictor | |
| prev_timestep = 0 if step_index == len(self.timesteps) - 1 else self.timesteps[step_index + 1] | |
| for i in range(self.config.solver_order - 1): | |
| self.model_outputs[i] = self.model_outputs[i + 1] | |
| self.timestep_list[i] = self.timestep_list[i + 1] | |
| self.model_outputs[-1] = model_output_convert | |
| self.timestep_list[-1] = timestep | |
| if self.config.lower_order_final: | |
| this_order = min(self.config.solver_order, len(self.timesteps) - step_index) | |
| else: | |
| this_order = self.config.solver_order | |
| self.this_order = min(this_order, self.lower_order_nums + 1) # warmup for multistep | |
| assert self.this_order > 0 | |
| self.last_sample = sample | |
| prev_sample = self.multistep_uni_p_bh_update( | |
| model_output=model_output, # pass the original non-converted model output, in case solver-p is used | |
| prev_timestep=prev_timestep, | |
| sample=sample, | |
| order=self.this_order, | |
| ) | |
| if self.lower_order_nums < self.config.solver_order: | |
| self.lower_order_nums += 1 | |
| if not return_dict: | |
| return (prev_sample,) | |
| return SchedulerOutput(prev_sample=prev_sample) | |
| def scale_model_input(self, sample: torch.FloatTensor, *args, **kwargs) -> torch.FloatTensor: | |
| """ | |
| Ensures interchangeability with schedulers that need to scale the denoising model input depending on the | |
| current timestep. | |
| Args: | |
| sample (`torch.FloatTensor`): input sample | |
| Returns: | |
| `torch.FloatTensor`: scaled input sample | |
| """ | |
| return sample | |
| # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.add_noise | |
| def add_noise( | |
| self, | |
| original_samples: torch.FloatTensor, | |
| noise: torch.FloatTensor, | |
| timesteps: torch.IntTensor, | |
| ) -> torch.FloatTensor: | |
| # Make sure alphas_cumprod and timestep have same device and dtype as original_samples | |
| alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype) | |
| timesteps = timesteps.to(original_samples.device) | |
| sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5 | |
| sqrt_alpha_prod = sqrt_alpha_prod.flatten() | |
| while len(sqrt_alpha_prod.shape) < len(original_samples.shape): | |
| sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) | |
| sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5 | |
| sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() | |
| while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape): | |
| sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) | |
| noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise | |
| return noisy_samples | |
| def __len__(self): | |
| return self.config.num_train_timesteps | |