Spaces:
Runtime error
Runtime error
| # Copyright 2023 ETH Zurich Computer Vision Lab and The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import warnings | |
| from typing import List, Optional, Tuple, Union | |
| import numpy as np | |
| import PIL | |
| import torch | |
| from ...models import UNet2DModel | |
| from ...schedulers import RePaintScheduler | |
| from ...utils import PIL_INTERPOLATION, logging, randn_tensor | |
| from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.preprocess | |
| def _preprocess_image(image: Union[List, PIL.Image.Image, torch.Tensor]): | |
| warnings.warn( | |
| "The preprocess method is deprecated and will be removed in a future version. Please" | |
| " use VaeImageProcessor.preprocess instead", | |
| FutureWarning, | |
| ) | |
| if isinstance(image, torch.Tensor): | |
| return image | |
| elif isinstance(image, PIL.Image.Image): | |
| image = [image] | |
| if isinstance(image[0], PIL.Image.Image): | |
| w, h = image[0].size | |
| w, h = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 | |
| image = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]))[None, :] for i in image] | |
| image = np.concatenate(image, axis=0) | |
| image = np.array(image).astype(np.float32) / 255.0 | |
| image = image.transpose(0, 3, 1, 2) | |
| image = 2.0 * image - 1.0 | |
| image = torch.from_numpy(image) | |
| elif isinstance(image[0], torch.Tensor): | |
| image = torch.cat(image, dim=0) | |
| return image | |
| def _preprocess_mask(mask: Union[List, PIL.Image.Image, torch.Tensor]): | |
| if isinstance(mask, torch.Tensor): | |
| return mask | |
| elif isinstance(mask, PIL.Image.Image): | |
| mask = [mask] | |
| if isinstance(mask[0], PIL.Image.Image): | |
| w, h = mask[0].size | |
| w, h = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 | |
| mask = [np.array(m.convert("L").resize((w, h), resample=PIL_INTERPOLATION["nearest"]))[None, :] for m in mask] | |
| mask = np.concatenate(mask, axis=0) | |
| mask = mask.astype(np.float32) / 255.0 | |
| mask[mask < 0.5] = 0 | |
| mask[mask >= 0.5] = 1 | |
| mask = torch.from_numpy(mask) | |
| elif isinstance(mask[0], torch.Tensor): | |
| mask = torch.cat(mask, dim=0) | |
| return mask | |
| class RePaintPipeline(DiffusionPipeline): | |
| unet: UNet2DModel | |
| scheduler: RePaintScheduler | |
| def __init__(self, unet, scheduler): | |
| super().__init__() | |
| self.register_modules(unet=unet, scheduler=scheduler) | |
| def __call__( | |
| self, | |
| image: Union[torch.Tensor, PIL.Image.Image], | |
| mask_image: Union[torch.Tensor, PIL.Image.Image], | |
| num_inference_steps: int = 250, | |
| eta: float = 0.0, | |
| jump_length: int = 10, | |
| jump_n_sample: int = 10, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| ) -> Union[ImagePipelineOutput, Tuple]: | |
| r""" | |
| Args: | |
| image (`torch.FloatTensor` or `PIL.Image.Image`): | |
| The original image to inpaint on. | |
| mask_image (`torch.FloatTensor` or `PIL.Image.Image`): | |
| The mask_image where 0.0 values define which part of the original image to inpaint (change). | |
| num_inference_steps (`int`, *optional*, defaults to 1000): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
| expense of slower inference. | |
| eta (`float`): | |
| The weight of noise for added noise in a diffusion step. Its value is between 0.0 and 1.0 - 0.0 is DDIM | |
| and 1.0 is DDPM scheduler respectively. | |
| jump_length (`int`, *optional*, defaults to 10): | |
| The number of steps taken forward in time before going backward in time for a single jump ("j" in | |
| RePaint paper). Take a look at Figure 9 and 10 in https://arxiv.org/pdf/2201.09865.pdf. | |
| jump_n_sample (`int`, *optional*, defaults to 10): | |
| The number of times we will make forward time jump for a given chosen time sample. Take a look at | |
| Figure 9 and 10 in https://arxiv.org/pdf/2201.09865.pdf. | |
| generator (`torch.Generator`, *optional*): | |
| One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
| to make generation deterministic. | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generate image. Choose between | |
| [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. | |
| Returns: | |
| [`~pipelines.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if `return_dict` is | |
| True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images. | |
| """ | |
| original_image = image | |
| original_image = _preprocess_image(original_image) | |
| original_image = original_image.to(device=self.device, dtype=self.unet.dtype) | |
| mask_image = _preprocess_mask(mask_image) | |
| mask_image = mask_image.to(device=self.device, dtype=self.unet.dtype) | |
| batch_size = original_image.shape[0] | |
| # sample gaussian noise to begin the loop | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| image_shape = original_image.shape | |
| image = randn_tensor(image_shape, generator=generator, device=self.device, dtype=self.unet.dtype) | |
| # set step values | |
| self.scheduler.set_timesteps(num_inference_steps, jump_length, jump_n_sample, self.device) | |
| self.scheduler.eta = eta | |
| t_last = self.scheduler.timesteps[0] + 1 | |
| generator = generator[0] if isinstance(generator, list) else generator | |
| for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)): | |
| if t < t_last: | |
| # predict the noise residual | |
| model_output = self.unet(image, t).sample | |
| # compute previous image: x_t -> x_t-1 | |
| image = self.scheduler.step(model_output, t, image, original_image, mask_image, generator).prev_sample | |
| else: | |
| # compute the reverse: x_t-1 -> x_t | |
| image = self.scheduler.undo_step(image, t_last, generator) | |
| t_last = t | |
| image = (image / 2 + 0.5).clamp(0, 1) | |
| image = image.cpu().permute(0, 2, 3, 1).numpy() | |
| if output_type == "pil": | |
| image = self.numpy_to_pil(image) | |
| if not return_dict: | |
| return (image,) | |
| return ImagePipelineOutput(images=image) | |