from torch import nn import torch try: from torchvision.models.utils import load_state_dict_from_url # torchvision 0.4+ except ModuleNotFoundError: try: from torch.hub import load_state_dict_from_url # torch 1.x except ModuleNotFoundError: from torch.utils.model_zoo import load_url as load_state_dict_from_url # torch 0.4.1 model_urls = { 'mobilenet_v2': 'https://download.pytorch.org/models/mobilenet_v2-b0353104.pth', } class ConvBNReLU(nn.Sequential): def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1, dilation=1): padding = (kernel_size - 1) // 2 if dilation != 1: padding = dilation super(ConvBNReLU, self).__init__( nn.Conv2d(in_planes, out_planes, kernel_size, stride, padding, groups=groups, dilation=dilation, bias=False), nn.BatchNorm2d(out_planes), nn.ReLU6(inplace=True) ) class InvertedResidual(nn.Module): def __init__(self, inp, oup, stride, expand_ratio, dilation=1): super(InvertedResidual, self).__init__() self.stride = stride assert stride in [1, 2] hidden_dim = int(round(inp * expand_ratio)) self.use_res_connect = self.stride == 1 and inp == oup layers = [] if expand_ratio != 1: # pw layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1)) layers.extend([ # dw ConvBNReLU(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim, dilation=dilation), # pw-linear nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False), nn.BatchNorm2d(oup), ]) self.conv = nn.Sequential(*layers) def forward(self, x): if self.use_res_connect: return x + self.conv(x) else: return self.conv(x) class MobileNetV2(nn.Module): def __init__(self, pretrained=None, num_classes=1000, width_mult=1.0): super(MobileNetV2, self).__init__() block = InvertedResidual input_channel = 32 last_channel = 1280 inverted_residual_setting = [ # t, c, n, s, d [1, 16, 1, 1, 1], # conv1 112*112*16 [6, 24, 2, 2, 1], # conv2 56*56*24 [6, 32, 3, 2, 1], # conv3 28*28*32 [6, 64, 4, 2, 1], [6, 96, 3, 1, 1], # conv4 14*14*96 [6, 160, 3, 2, 1], [6, 320, 1, 1, 1], # conv5 7*7*320 ] # building first layer input_channel = int(input_channel * width_mult) self.last_channel = int(last_channel * max(1.0, width_mult)) features = [ConvBNReLU(3, input_channel, stride=2)] # building inverted residual blocks for t, c, n, s, d in inverted_residual_setting: output_channel = int(c * width_mult) for i in range(n): stride = s if i == 0 else 1 dilation = d if i == 0 else 1 features.append(block(input_channel, output_channel, stride, expand_ratio=t, dilation=d)) input_channel = output_channel # building last several layers features.append(ConvBNReLU(input_channel, self.last_channel, kernel_size=1)) # make it nn.Sequential self.features = nn.Sequential(*features) # weight initialization for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out') if m.bias is not None: nn.init.zeros_(m.bias) elif isinstance(m, nn.BatchNorm2d): nn.init.ones_(m.weight) nn.init.zeros_(m.bias) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) nn.init.zeros_(m.bias) def forward(self, x): res = [] for idx, m in enumerate(self.features): x = m(x) if idx in [1, 3, 6, 13, 17]: res.append(x) return res def mobilenet_v2(pretrained=True, progress=True, **kwargs): model = MobileNetV2(**kwargs) if pretrained: state_dict = load_state_dict_from_url(model_urls['mobilenet_v2'], progress=progress) print("loading imagenet pretrained mobilenetv2") model.load_state_dict(state_dict, strict=False) print("loaded imagenet pretrained mobilenetv2") return model