kunkk commited on
Commit
f6bb351
·
verified ·
1 Parent(s): 71147e6

Upload 3 files

Browse files
Files changed (3) hide show
  1. README.md +20 -6
  2. app.py +115 -0
  3. requirements.txt +6 -0
README.md CHANGED
@@ -1,12 +1,26 @@
1
  ---
2
- title: Saliency Detection Demo
3
- emoji: 😻
4
- colorFrom: purple
5
- colorTo: pink
6
  sdk: gradio
7
- sdk_version: 5.27.0
8
  app_file: app.py
9
  pinned: false
10
  ---
11
 
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ title: 显著性目标检测Demo
3
+ emoji: 🔍
4
+ colorFrom: blue
5
+ colorTo: red
6
  sdk: gradio
7
+ sdk_version: 3.50.2
8
  app_file: app.py
9
  pinned: false
10
  ---
11
 
12
+ # 显著性目标检测Demo
13
+
14
+ 这个应用使用CyueNet模型进行显著性目标检测。上传一张图片,系统将自动检测并高亮显示图像中的显著性区域。
15
+
16
+ ## 功能
17
+
18
+ - 上传图像进行显著性检测
19
+ - 显示原始图像、显著性图、热力图、叠加结果和分割结果
20
+ - 实时处理,显示推理时间
21
+
22
+ ## 使用方法
23
+
24
+ 1. 点击"输入图像"区域上传一张图片
25
+ 2. 点击"开始检测"按钮进行显著性目标检测
26
+ 3. 查看检测结果
app.py ADDED
@@ -0,0 +1,115 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn.functional as F
3
+ import numpy as np
4
+ import os
5
+ import time
6
+ import gradio as gr
7
+ import cv2
8
+ from PIL import Image
9
+ from model.CyueNet_models import MMS
10
+ from utils1.data import transform_image
11
+
12
+ # 设置GPU/CPU
13
+ device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
14
+
15
+ def load_model():
16
+ """加载预训练的模型"""
17
+ model = MMS()
18
+ try:
19
+ # 使用相对路径,模型文件将存储在HuggingFace Spaces上
20
+ model.load_state_dict(torch.load('models/CyueNet_EORSSD6.pth.54', map_location=device))
21
+ print("模型加载成功")
22
+ except RuntimeError as e:
23
+ print(f"加载状态字典时出现部分不匹配,错误信息: {e}")
24
+ model.to(device)
25
+ model.eval()
26
+ return model
27
+
28
+ def process_image(image, model, testsize=256):
29
+ """处理图像并返回显著性检测结果"""
30
+ # 预处理图像
31
+ image = Image.fromarray(image).convert('RGB')
32
+ image = transform_image(image, testsize)
33
+ image = image.unsqueeze(0)
34
+ image = image.to(device)
35
+
36
+ # 计时
37
+ time_start = time.time()
38
+
39
+ # 推理
40
+ with torch.no_grad():
41
+ x1, res, s1_sig, edg1, edg_s, s2, e2, s2_sig, e2_sig, s3, e3, s3_sig, e3_sig, s4, e4, s4_sig, e4_sig, s5, e5, s5_sig, e5_sig, sk1, sk1_sig, sk2, sk2_sig, sk3, sk3_sig, sk4, sk4_sig, sk5, sk5_sig = model(image)
42
+
43
+ time_end = time.time()
44
+ inference_time = time_end - time_start
45
+
46
+ # 处理输出结果
47
+ res = res.sigmoid().data.cpu().numpy().squeeze()
48
+ res = (res - res.min()) / (res.max() - res.min() + 1e-8)
49
+
50
+ # 将输出调整为原始图像大小
51
+ original_image = np.array(Image.fromarray(image.cpu().squeeze().permute(1, 2, 0).numpy()))
52
+ h, w = original_image.shape[:2]
53
+ res_resized = cv2.resize(res, (w, h))
54
+
55
+ # 转换为可视化图像
56
+ res_vis = (res_resized * 255).astype(np.uint8)
57
+
58
+ # 创建热力图
59
+ heatmap = cv2.applyColorMap(res_vis, cv2.COLORMAP_JET)
60
+
61
+ # 将热力图与原始图像混合
62
+ alpha = 0.5
63
+ overlayed = cv2.addWeighted(original_image, 1-alpha, heatmap, alpha, 0)
64
+
65
+ # 二值化结果用于分割
66
+ _, binary_mask = cv2.threshold(res_vis, 127, 255, cv2.THRESH_BINARY)
67
+ segmented = cv2.bitwise_and(original_image, original_image, mask=binary_mask)
68
+
69
+ return original_image, res_vis, heatmap, overlayed, segmented, f"推理时间: {inference_time:.4f}秒"
70
+
71
+ def run_demo(input_image):
72
+ """Gradio界面的主函数"""
73
+ if input_image is None:
74
+ return [None] * 5 + ["请上传图片"]
75
+
76
+ # 处理图像
77
+ original, saliency_map, heatmap, overlayed, segmented, time_info = process_image(input_image, model)
78
+
79
+ return original, saliency_map, heatmap, overlayed, segmented, time_info
80
+
81
+ # 加载模型
82
+ print("正在加载模型...")
83
+ model = load_model()
84
+
85
+ # 创建Gradio界面
86
+ with gr.Blocks(title="显著性目标检测Demo") as demo:
87
+ gr.Markdown("# 显著性目标检测Demo")
88
+ gr.Markdown("上传一张图片,系统将自动检测显著性区域")
89
+
90
+ with gr.Row():
91
+ with gr.Column():
92
+ input_image = gr.Image(label="输入图像", type="numpy")
93
+ submit_btn = gr.Button("开始检测")
94
+
95
+ with gr.Column():
96
+ original_output = gr.Image(label="原始图像")
97
+ saliency_output = gr.Image(label="显著性图")
98
+ heatmap_output = gr.Image(label="热力图")
99
+ overlayed_output = gr.Image(label="叠加结果")
100
+ segmented_output = gr.Image(label="分割结果")
101
+ time_info = gr.Textbox(label="处理信息")
102
+
103
+ submit_btn.click(
104
+ fn=run_demo,
105
+ inputs=input_image,
106
+ outputs=[original_output, saliency_output, heatmap_output, overlayed_output, segmented_output, time_info]
107
+ )
108
+
109
+ gr.Markdown("## 使用说明")
110
+ gr.Markdown("1. 点击'输入图像'区域上传一张图片")
111
+ gr.Markdown("2. 点击'开始检测'按钮进行显著性目标检测")
112
+ gr.Markdown("3. 系统将显示原始图像、显著性图、热力图、叠加结果和分割结果")
113
+
114
+ # 启动Gradio应用
115
+ demo.launch()
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ torch
2
+ torchvision
3
+ numpy
4
+ opencv-python
5
+ pillow
6
+ gradio