Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- README.md +20 -6
- app.py +115 -0
- requirements.txt +6 -0
README.md
CHANGED
|
@@ -1,12 +1,26 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version:
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
---
|
| 11 |
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
title: 显著性目标检测Demo
|
| 3 |
+
emoji: 🔍
|
| 4 |
+
colorFrom: blue
|
| 5 |
+
colorTo: red
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 3.50.2
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
---
|
| 11 |
|
| 12 |
+
# 显著性目标检测Demo
|
| 13 |
+
|
| 14 |
+
这个应用使用CyueNet模型进行显著性目标检测。上传一张图片,系统将自动检测并高亮显示图像中的显著性区域。
|
| 15 |
+
|
| 16 |
+
## 功能
|
| 17 |
+
|
| 18 |
+
- 上传图像进行显著性检测
|
| 19 |
+
- 显示原始图像、显著性图、热力图、叠加结果和分割结果
|
| 20 |
+
- 实时处理,显示推理时间
|
| 21 |
+
|
| 22 |
+
## 使用方法
|
| 23 |
+
|
| 24 |
+
1. 点击"输入图像"区域上传一张图片
|
| 25 |
+
2. 点击"开始检测"按钮进行显著性目标检测
|
| 26 |
+
3. 查看检测结果
|
app.py
ADDED
|
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn.functional as F
|
| 3 |
+
import numpy as np
|
| 4 |
+
import os
|
| 5 |
+
import time
|
| 6 |
+
import gradio as gr
|
| 7 |
+
import cv2
|
| 8 |
+
from PIL import Image
|
| 9 |
+
from model.CyueNet_models import MMS
|
| 10 |
+
from utils1.data import transform_image
|
| 11 |
+
|
| 12 |
+
# 设置GPU/CPU
|
| 13 |
+
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
|
| 14 |
+
|
| 15 |
+
def load_model():
|
| 16 |
+
"""加载预训练的模型"""
|
| 17 |
+
model = MMS()
|
| 18 |
+
try:
|
| 19 |
+
# 使用相对路径,模型文件将存储在HuggingFace Spaces上
|
| 20 |
+
model.load_state_dict(torch.load('models/CyueNet_EORSSD6.pth.54', map_location=device))
|
| 21 |
+
print("模型加载成功")
|
| 22 |
+
except RuntimeError as e:
|
| 23 |
+
print(f"加载状态字典时出现部分不匹配,错误信息: {e}")
|
| 24 |
+
model.to(device)
|
| 25 |
+
model.eval()
|
| 26 |
+
return model
|
| 27 |
+
|
| 28 |
+
def process_image(image, model, testsize=256):
|
| 29 |
+
"""处理图像并返回显著性检测结果"""
|
| 30 |
+
# 预处理图像
|
| 31 |
+
image = Image.fromarray(image).convert('RGB')
|
| 32 |
+
image = transform_image(image, testsize)
|
| 33 |
+
image = image.unsqueeze(0)
|
| 34 |
+
image = image.to(device)
|
| 35 |
+
|
| 36 |
+
# 计时
|
| 37 |
+
time_start = time.time()
|
| 38 |
+
|
| 39 |
+
# 推理
|
| 40 |
+
with torch.no_grad():
|
| 41 |
+
x1, res, s1_sig, edg1, edg_s, s2, e2, s2_sig, e2_sig, s3, e3, s3_sig, e3_sig, s4, e4, s4_sig, e4_sig, s5, e5, s5_sig, e5_sig, sk1, sk1_sig, sk2, sk2_sig, sk3, sk3_sig, sk4, sk4_sig, sk5, sk5_sig = model(image)
|
| 42 |
+
|
| 43 |
+
time_end = time.time()
|
| 44 |
+
inference_time = time_end - time_start
|
| 45 |
+
|
| 46 |
+
# 处理输出结果
|
| 47 |
+
res = res.sigmoid().data.cpu().numpy().squeeze()
|
| 48 |
+
res = (res - res.min()) / (res.max() - res.min() + 1e-8)
|
| 49 |
+
|
| 50 |
+
# 将输出调整为原始图像大小
|
| 51 |
+
original_image = np.array(Image.fromarray(image.cpu().squeeze().permute(1, 2, 0).numpy()))
|
| 52 |
+
h, w = original_image.shape[:2]
|
| 53 |
+
res_resized = cv2.resize(res, (w, h))
|
| 54 |
+
|
| 55 |
+
# 转换为可视化图像
|
| 56 |
+
res_vis = (res_resized * 255).astype(np.uint8)
|
| 57 |
+
|
| 58 |
+
# 创建热力图
|
| 59 |
+
heatmap = cv2.applyColorMap(res_vis, cv2.COLORMAP_JET)
|
| 60 |
+
|
| 61 |
+
# 将热力图与原始图像混合
|
| 62 |
+
alpha = 0.5
|
| 63 |
+
overlayed = cv2.addWeighted(original_image, 1-alpha, heatmap, alpha, 0)
|
| 64 |
+
|
| 65 |
+
# 二值化结果用于分割
|
| 66 |
+
_, binary_mask = cv2.threshold(res_vis, 127, 255, cv2.THRESH_BINARY)
|
| 67 |
+
segmented = cv2.bitwise_and(original_image, original_image, mask=binary_mask)
|
| 68 |
+
|
| 69 |
+
return original_image, res_vis, heatmap, overlayed, segmented, f"推理时间: {inference_time:.4f}秒"
|
| 70 |
+
|
| 71 |
+
def run_demo(input_image):
|
| 72 |
+
"""Gradio界面的主函数"""
|
| 73 |
+
if input_image is None:
|
| 74 |
+
return [None] * 5 + ["请上传图片"]
|
| 75 |
+
|
| 76 |
+
# 处理图像
|
| 77 |
+
original, saliency_map, heatmap, overlayed, segmented, time_info = process_image(input_image, model)
|
| 78 |
+
|
| 79 |
+
return original, saliency_map, heatmap, overlayed, segmented, time_info
|
| 80 |
+
|
| 81 |
+
# 加载模型
|
| 82 |
+
print("正在加载模型...")
|
| 83 |
+
model = load_model()
|
| 84 |
+
|
| 85 |
+
# 创建Gradio界面
|
| 86 |
+
with gr.Blocks(title="显著性目标检测Demo") as demo:
|
| 87 |
+
gr.Markdown("# 显著性目标检测Demo")
|
| 88 |
+
gr.Markdown("上传一张图片,系统将自动检测显著性区域")
|
| 89 |
+
|
| 90 |
+
with gr.Row():
|
| 91 |
+
with gr.Column():
|
| 92 |
+
input_image = gr.Image(label="输入图像", type="numpy")
|
| 93 |
+
submit_btn = gr.Button("开始检测")
|
| 94 |
+
|
| 95 |
+
with gr.Column():
|
| 96 |
+
original_output = gr.Image(label="原始图像")
|
| 97 |
+
saliency_output = gr.Image(label="显著性图")
|
| 98 |
+
heatmap_output = gr.Image(label="热力图")
|
| 99 |
+
overlayed_output = gr.Image(label="叠加结果")
|
| 100 |
+
segmented_output = gr.Image(label="分割结果")
|
| 101 |
+
time_info = gr.Textbox(label="处理信息")
|
| 102 |
+
|
| 103 |
+
submit_btn.click(
|
| 104 |
+
fn=run_demo,
|
| 105 |
+
inputs=input_image,
|
| 106 |
+
outputs=[original_output, saliency_output, heatmap_output, overlayed_output, segmented_output, time_info]
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
gr.Markdown("## 使用说明")
|
| 110 |
+
gr.Markdown("1. 点击'输入图像'区域上传一张图片")
|
| 111 |
+
gr.Markdown("2. 点击'开始检测'按钮进行显著性目标检测")
|
| 112 |
+
gr.Markdown("3. 系统将显示原始图像、显著性图、热力图、叠加结果和分割结果")
|
| 113 |
+
|
| 114 |
+
# 启动Gradio应用
|
| 115 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
torchvision
|
| 3 |
+
numpy
|
| 4 |
+
opencv-python
|
| 5 |
+
pillow
|
| 6 |
+
gradio
|