Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -27,18 +27,21 @@ def load_model():
|
|
| 27 |
|
| 28 |
def process_image(image, model, testsize=256):
|
| 29 |
"""处理图像并返回显著性检测结果"""
|
|
|
|
|
|
|
|
|
|
| 30 |
# 预处理图像
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
|
| 36 |
# 计时
|
| 37 |
time_start = time.time()
|
| 38 |
|
| 39 |
# 推理
|
| 40 |
with torch.no_grad():
|
| 41 |
-
x1, res, s1_sig, edg1, edg_s, s2, e2, s2_sig, e2_sig, s3, e3, s3_sig, e3_sig, s4, e4, s4_sig, e4_sig, s5, e5, s5_sig, e5_sig, sk1, sk1_sig, sk2, sk2_sig, sk3, sk3_sig, sk4, sk4_sig, sk5, sk5_sig = model(
|
| 42 |
|
| 43 |
time_end = time.time()
|
| 44 |
inference_time = time_end - time_start
|
|
@@ -48,7 +51,6 @@ def process_image(image, model, testsize=256):
|
|
| 48 |
res = (res - res.min()) / (res.max() - res.min() + 1e-8)
|
| 49 |
|
| 50 |
# 将输出调整为原始图像大小
|
| 51 |
-
original_image = np.array(Image.fromarray(image.cpu().squeeze().permute(1, 2, 0).numpy()))
|
| 52 |
h, w = original_image.shape[:2]
|
| 53 |
res_resized = cv2.resize(res, (w, h))
|
| 54 |
|
|
@@ -60,13 +62,23 @@ def process_image(image, model, testsize=256):
|
|
| 60 |
|
| 61 |
# 将热力图与原始图像混合
|
| 62 |
alpha = 0.5
|
| 63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
# 二值化结果用于分割
|
| 66 |
_, binary_mask = cv2.threshold(res_vis, 127, 255, cv2.THRESH_BINARY)
|
| 67 |
-
segmented = cv2.bitwise_and(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
-
return original_image, res_vis, heatmap,
|
| 70 |
|
| 71 |
def run_demo(input_image):
|
| 72 |
"""Gradio界面的主函数"""
|
|
@@ -112,4 +124,5 @@ with gr.Blocks(title="显著性目标检测Demo") as demo:
|
|
| 112 |
gr.Markdown("3. 系统将显示原始图像、显著性图、热力图、叠加结果和分割结果")
|
| 113 |
|
| 114 |
# 启动Gradio应用
|
| 115 |
-
|
|
|
|
|
|
| 27 |
|
| 28 |
def process_image(image, model, testsize=256):
|
| 29 |
"""处理图像并返回显著性检测结果"""
|
| 30 |
+
# 保存原始图像用于后续处理
|
| 31 |
+
original_image = image.copy()
|
| 32 |
+
|
| 33 |
# 预处理图像
|
| 34 |
+
image_pil = Image.fromarray(image).convert('RGB')
|
| 35 |
+
image_tensor = transform_image(image_pil, testsize)
|
| 36 |
+
image_tensor = image_tensor.unsqueeze(0)
|
| 37 |
+
image_tensor = image_tensor.to(device)
|
| 38 |
|
| 39 |
# 计时
|
| 40 |
time_start = time.time()
|
| 41 |
|
| 42 |
# 推理
|
| 43 |
with torch.no_grad():
|
| 44 |
+
x1, res, s1_sig, edg1, edg_s, s2, e2, s2_sig, e2_sig, s3, e3, s3_sig, e3_sig, s4, e4, s4_sig, e4_sig, s5, e5, s5_sig, e5_sig, sk1, sk1_sig, sk2, sk2_sig, sk3, sk3_sig, sk4, sk4_sig, sk5, sk5_sig = model(image_tensor)
|
| 45 |
|
| 46 |
time_end = time.time()
|
| 47 |
inference_time = time_end - time_start
|
|
|
|
| 51 |
res = (res - res.min()) / (res.max() - res.min() + 1e-8)
|
| 52 |
|
| 53 |
# 将输出调整为原始图像大小
|
|
|
|
| 54 |
h, w = original_image.shape[:2]
|
| 55 |
res_resized = cv2.resize(res, (w, h))
|
| 56 |
|
|
|
|
| 62 |
|
| 63 |
# 将热力图与原始图像混合
|
| 64 |
alpha = 0.5
|
| 65 |
+
# 确保原始图像是BGR格式用于OpenCV操作
|
| 66 |
+
if len(original_image.shape) == 3 and original_image.shape[2] == 3:
|
| 67 |
+
original_bgr = cv2.cvtColor(original_image, cv2.COLOR_RGB2BGR)
|
| 68 |
+
else:
|
| 69 |
+
original_bgr = cv2.cvtColor(original_image, cv2.COLOR_GRAY2BGR)
|
| 70 |
+
|
| 71 |
+
overlayed = cv2.addWeighted(original_bgr, 1-alpha, heatmap, alpha, 0)
|
| 72 |
|
| 73 |
# 二值化结果用于分割
|
| 74 |
_, binary_mask = cv2.threshold(res_vis, 127, 255, cv2.THRESH_BINARY)
|
| 75 |
+
segmented = cv2.bitwise_and(original_bgr, original_bgr, mask=binary_mask)
|
| 76 |
+
|
| 77 |
+
# 转回RGB格式用于显示
|
| 78 |
+
overlayed_rgb = cv2.cvtColor(overlayed, cv2.COLOR_BGR2RGB)
|
| 79 |
+
segmented_rgb = cv2.cvtColor(segmented, cv2.COLOR_BGR2RGB)
|
| 80 |
|
| 81 |
+
return original_image, res_vis, heatmap, overlayed_rgb, segmented_rgb, f"推理时间: {inference_time:.4f}秒"
|
| 82 |
|
| 83 |
def run_demo(input_image):
|
| 84 |
"""Gradio界面的主函数"""
|
|
|
|
| 124 |
gr.Markdown("3. 系统将显示原始图像、显著性图、热力图、叠加结果和分割结果")
|
| 125 |
|
| 126 |
# 启动Gradio应用
|
| 127 |
+
if __name__ == "__main__":
|
| 128 |
+
demo.launch(share=True)
|