Spaces:
Sleeping
Sleeping
Upload data.py
Browse files- utils1/data.py +125 -0
utils1/data.py
ADDED
|
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os, glob, random
|
| 2 |
+
import numpy as np
|
| 3 |
+
from PIL import Image
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
import torch.utils.data as data
|
| 7 |
+
import torchvision.transforms as transforms
|
| 8 |
+
from joint_transforms import Compose, RandomHorizontallyFlip
|
| 9 |
+
|
| 10 |
+
import cv2
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class SalObjDataset(data.Dataset):
|
| 14 |
+
def __init__(self, image_root, gt_root, ek_root, trainsize):
|
| 15 |
+
self.trainsize = trainsize
|
| 16 |
+
self.images = [image_root + f for f in os.listdir(image_root) if f.endswith('.jpg')]
|
| 17 |
+
self.gts = [gt_root + f for f in os.listdir(gt_root) if f.endswith('.png')]
|
| 18 |
+
self.ek = [ek_root + f for f in os.listdir(gt_root) if f.endswith('.png')]
|
| 19 |
+
|
| 20 |
+
self.images = sorted(self.images)
|
| 21 |
+
self.gts = sorted(self.gts)
|
| 22 |
+
self.eks = sorted(self.ek)
|
| 23 |
+
|
| 24 |
+
self.size = len(self.images)
|
| 25 |
+
self.img_transform = transforms.Compose([
|
| 26 |
+
transforms.Resize((self.trainsize, self.trainsize)),
|
| 27 |
+
transforms.ToTensor(),
|
| 28 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])
|
| 29 |
+
self.gt_transform = transforms.Compose([
|
| 30 |
+
transforms.Resize((self.trainsize, self.trainsize)),
|
| 31 |
+
transforms.ToTensor()])
|
| 32 |
+
self.ek_transform = transforms.Compose([
|
| 33 |
+
transforms.Resize((self.trainsize, self.trainsize)),
|
| 34 |
+
transforms.ToTensor()])
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def __getitem__(self, index):
|
| 38 |
+
image = self.rgb_loader(self.images[index])
|
| 39 |
+
gt = self.binary_loader(self.gts[index])
|
| 40 |
+
ek = self.binary_loader(self.eks[index])
|
| 41 |
+
|
| 42 |
+
image = self.img_transform(image)
|
| 43 |
+
gt = self.gt_transform(gt)
|
| 44 |
+
ek = self.ek_transform(ek)
|
| 45 |
+
|
| 46 |
+
return image, gt, ek
|
| 47 |
+
|
| 48 |
+
def rgb_loader(self, path):
|
| 49 |
+
with open(path, 'rb') as f:
|
| 50 |
+
img = Image.open(f)
|
| 51 |
+
return img.convert('RGB')
|
| 52 |
+
|
| 53 |
+
def binary_loader(self, path):
|
| 54 |
+
with open(path, 'rb') as f:
|
| 55 |
+
img = Image.open(f)
|
| 56 |
+
return img.convert('L')
|
| 57 |
+
|
| 58 |
+
def __len__(self):
|
| 59 |
+
return self.size
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
def get_loader(image_root, gt_root, ek_root, batchsize, trainsize, shuffle=True, num_workers=0, pin_memory=True):
|
| 63 |
+
dataset = SalObjDataset(image_root, gt_root, ek_root, trainsize)
|
| 64 |
+
data_loader = data.DataLoader(dataset=dataset,
|
| 65 |
+
batch_size=batchsize,
|
| 66 |
+
shuffle=shuffle,
|
| 67 |
+
num_workers=num_workers,
|
| 68 |
+
pin_memory=pin_memory)
|
| 69 |
+
return data_loader
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
class test_dataset:
|
| 73 |
+
def __init__(self, image_root, gt_root, testsize):
|
| 74 |
+
self.testsize = testsize
|
| 75 |
+
self.images = [image_root + f for f in os.listdir(image_root) if f.endswith('.jpg')]
|
| 76 |
+
self.gts = [gt_root + f for f in os.listdir(gt_root) if f.endswith('.jpg')
|
| 77 |
+
or f.endswith('.png')]
|
| 78 |
+
self.images = sorted(self.images)
|
| 79 |
+
self.gts = sorted(self.gts)
|
| 80 |
+
self.img_transform = transforms.Compose([
|
| 81 |
+
transforms.Resize((self.testsize, self.testsize)),
|
| 82 |
+
transforms.ToTensor(),
|
| 83 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])
|
| 84 |
+
self.gt_transform = transforms.ToTensor()
|
| 85 |
+
self.size = len(self.images)
|
| 86 |
+
self.index = 0
|
| 87 |
+
|
| 88 |
+
def load_data(self):
|
| 89 |
+
image = self.rgb_loader(self.images[self.index])
|
| 90 |
+
image = self.img_transform(image).unsqueeze(0)
|
| 91 |
+
gt = self.binary_loader(self.gts[self.index])
|
| 92 |
+
name = self.images[self.index].split('/')[-1]
|
| 93 |
+
if name.endswith('.jpg'):
|
| 94 |
+
name = name.split('.jpg')[0] + '.png'
|
| 95 |
+
self.index += 1
|
| 96 |
+
return image, gt, name
|
| 97 |
+
|
| 98 |
+
def rgb_loader(self, path):
|
| 99 |
+
with open(path, 'rb') as f:
|
| 100 |
+
img = Image.open(f)
|
| 101 |
+
return img.convert('RGB')
|
| 102 |
+
|
| 103 |
+
def binary_loader(self, path):
|
| 104 |
+
with open(path, 'rb') as f:
|
| 105 |
+
img = Image.open(f)
|
| 106 |
+
return img.convert('L')
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
def transform_image(image, testsize):
|
| 110 |
+
"""预处理单张图像用于推理
|
| 111 |
+
|
| 112 |
+
Args:
|
| 113 |
+
image: PIL Image对象
|
| 114 |
+
testsize: 目标尺寸
|
| 115 |
+
|
| 116 |
+
Returns:
|
| 117 |
+
torch.Tensor: 预处理后的图像张量
|
| 118 |
+
"""
|
| 119 |
+
transform = transforms.Compose([
|
| 120 |
+
transforms.Resize((testsize, testsize)),
|
| 121 |
+
transforms.ToTensor(),
|
| 122 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
| 123 |
+
])
|
| 124 |
+
|
| 125 |
+
return transform(image)
|