Spaces:
Build error
Build error
| extern "C" { | |
| // | |
| // C interface | |
| // | |
| // TODO: show sample usage | |
| // | |
| struct llama_v2_context; | |
| typedef int llama_v2_token; | |
| typedef struct llama_v2_token_data { | |
| llama_v2_token id; // token id | |
| float logit; // log-odds of the token | |
| float p; // probability of the token | |
| } llama_v2_token_data; | |
| typedef struct llama_v2_token_data_array { | |
| llama_v2_token_data * data; | |
| size_t size; | |
| bool sorted; | |
| } llama_v2_token_data_array; | |
| typedef void (*llama_v2_progress_callback)(float progress, void *ctx); | |
| struct llama_v2_context_params { | |
| int n_ctx; // text context | |
| int n_gpu_layers; // number of layers to store in VRAM | |
| int seed; // RNG seed, -1 for random | |
| bool f16_kv; // use fp16 for KV cache | |
| bool logits_all; // the llama_v2_eval() call computes all logits, not just the last one | |
| bool vocab_only; // only load the vocabulary, no weights | |
| bool use_mmap; // use mmap if possible | |
| bool use_mlock; // force system to keep model in RAM | |
| bool embedding; // embedding mode only | |
| // called with a progress value between 0 and 1, pass NULL to disable | |
| llama_v2_progress_callback progress_callback; | |
| // context pointer passed to the progress callback | |
| void * progress_callback_user_data; | |
| }; | |
| // model file types | |
| enum llama_v2_ftype { | |
| LLAMA_V2_FTYPE_ALL_F32 = 0, | |
| LLAMA_V2_FTYPE_MOSTLY_F16 = 1, // except 1d tensors | |
| LLAMA_V2_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors | |
| LLAMA_V2_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors | |
| LLAMA_V2_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16 | |
| LLAMA_V2_FTYPE_MOSTLY_Q4_2 = 5, // except 1d tensors | |
| LLAMA_V2_FTYPE_MOSTLY_Q4_3 = 6, // except 1d tensors | |
| LLAMA_V2_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors | |
| LLAMA_V2_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors | |
| LLAMA_V2_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors | |
| }; | |
| LLAMA_V2_API struct llama_v2_context_params llama_v2_context_default_params(); | |
| LLAMA_V2_API bool llama_v2_mmap_supported(); | |
| LLAMA_V2_API bool llama_v2_mlock_supported(); | |
| // Various functions for loading a ggml llama model. | |
| // Allocate (almost) all memory needed for the model. | |
| // Return NULL on failure | |
| LLAMA_V2_API struct llama_v2_context * llama_v2_init_from_file( | |
| const char * path_model, | |
| struct llama_v2_context_params params); | |
| // Frees all allocated memory | |
| LLAMA_V2_API void llama_v2_free(struct llama_v2_context * ctx); | |
| // TODO: not great API - very likely to change | |
| // Returns 0 on success | |
| // nthread - how many threads to use. If <=0, will use std::thread::hardware_concurrency(), else the number given | |
| LLAMA_V2_API int llama_v2_model_quantize( | |
| const char * fname_inp, | |
| const char * fname_out, | |
| enum llama_v2_ftype ftype, | |
| int nthread); | |
| // Apply a LoRA adapter to a loaded model | |
| // path_base_model is the path to a higher quality model to use as a base for | |
| // the layers modified by the adapter. Can be NULL to use the current loaded model. | |
| // The model needs to be reloaded before applying a new adapter, otherwise the adapter | |
| // will be applied on top of the previous one | |
| // Returns 0 on success | |
| LLAMA_V2_API int llama_v2_apply_lora_from_file( | |
| struct llama_v2_context * ctx, | |
| const char * path_lora, | |
| const char * path_base_model, | |
| int n_threads); | |
| // Returns the number of tokens in the KV cache | |
| LLAMA_V2_API int llama_v2_get_kv_cache_token_count(const struct llama_v2_context * ctx); | |
| // Sets the current rng seed. | |
| LLAMA_V2_API void llama_v2_set_rng_seed(struct llama_v2_context * ctx, int seed); | |
| // Returns the maximum size in bytes of the state (rng, logits, embedding | |
| // and kv_cache) - will often be smaller after compacting tokens | |
| LLAMA_V2_API size_t llama_v2_get_state_size(const struct llama_v2_context * ctx); | |
| // Copies the state to the specified destination address. | |
| // Destination needs to have allocated enough memory. | |
| // Returns the number of bytes copied | |
| LLAMA_V2_API size_t llama_v2_copy_state_data(struct llama_v2_context * ctx, uint8_t * dst); | |
| // Set the state reading from the specified address | |
| // Returns the number of bytes read | |
| LLAMA_V2_API size_t llama_v2_set_state_data(struct llama_v2_context * ctx, const uint8_t * src); | |
| // Save/load session file | |
| LLAMA_V2_API bool llama_v2_load_session_file(struct llama_v2_context * ctx, const char * path_session, llama_v2_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out); | |
| LLAMA_V2_API bool llama_v2_save_session_file(struct llama_v2_context * ctx, const char * path_session, const llama_v2_token * tokens, size_t n_token_count); | |
| // Run the llama inference to obtain the logits and probabilities for the next token. | |
| // tokens + n_tokens is the provided batch of new tokens to process | |
| // n_past is the number of tokens to use from previous eval calls | |
| // Returns 0 on success | |
| LLAMA_V2_API int llama_v2_eval( | |
| struct llama_v2_context * ctx, | |
| const llama_v2_token * tokens, | |
| int n_tokens, | |
| int n_past, | |
| int n_threads); | |
| // Convert the provided text into tokens. | |
| // The tokens pointer must be large enough to hold the resulting tokens. | |
| // Returns the number of tokens on success, no more than n_max_tokens | |
| // Returns a negative number on failure - the number of tokens that would have been returned | |
| // TODO: not sure if correct | |
| LLAMA_V2_API int llama_v2_tokenize( | |
| struct llama_v2_context * ctx, | |
| const char * text, | |
| llama_v2_token * tokens, | |
| int n_max_tokens, | |
| bool add_bos); | |
| std::vector<llama_v2_token> legacy_llama_v2_tokenize(struct llama_v2_context * ctx, const std::string & text, bool add_bos); | |
| LLAMA_V2_API int llama_v2_n_vocab(const struct llama_v2_context * ctx); | |
| LLAMA_V2_API int llama_v2_n_ctx (const struct llama_v2_context * ctx); | |
| LLAMA_V2_API int llama_v2_n_embd (const struct llama_v2_context * ctx); | |
| // Token logits obtained from the last call to llama_v2_eval() | |
| // The logits for the last token are stored in the last row | |
| // Can be mutated in order to change the probabilities of the next token | |
| // Rows: n_tokens | |
| // Cols: n_vocab | |
| LLAMA_V2_API float * llama_v2_get_logits(struct llama_v2_context * ctx); | |
| // Get the embeddings for the input | |
| // shape: [n_embd] (1-dimensional) | |
| LLAMA_V2_API float * llama_v2_get_embeddings(struct llama_v2_context * ctx); | |
| // Token Id -> String. Uses the vocabulary in the provided context | |
| LLAMA_V2_API const char * llama_v2_token_to_str(const struct llama_v2_context * ctx, llama_v2_token token); | |
| // Special tokens | |
| LLAMA_V2_API llama_v2_token llama_v2_token_bos(); | |
| LLAMA_V2_API llama_v2_token llama_v2_token_eos(); | |
| LLAMA_V2_API llama_v2_token llama_v2_token_nl(); | |
| // Sampling functions | |
| /// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix. | |
| LLAMA_V2_API void llama_v2_sample_repetition_penalty(struct llama_v2_context * ctx, llama_v2_token_data_array * candidates, const llama_v2_token * last_tokens, size_t last_tokens_size, float penalty); | |
| /// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details. | |
| LLAMA_V2_API void llama_v2_sample_frequency_and_presence_penalties(struct llama_v2_context * ctx, llama_v2_token_data_array * candidates, const llama_v2_token * last_tokens, size_t last_tokens_size, float alpha_frequency, float alpha_presence); | |
| /// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits. | |
| LLAMA_V2_API void llama_v2_sample_softmax(struct llama_v2_context * ctx, llama_v2_token_data_array * candidates); | |
| /// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751 | |
| LLAMA_V2_API void llama_v2_sample_top_k(struct llama_v2_context * ctx, llama_v2_token_data_array * candidates, int k, size_t min_keep); | |
| /// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751 | |
| LLAMA_V2_API void llama_v2_sample_top_p(struct llama_v2_context * ctx, llama_v2_token_data_array * candidates, float p, size_t min_keep); | |
| /// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/. | |
| LLAMA_V2_API void llama_v2_sample_tail_free(struct llama_v2_context * ctx, llama_v2_token_data_array * candidates, float z, size_t min_keep); | |
| /// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666. | |
| LLAMA_V2_API void llama_v2_sample_typical(struct llama_v2_context * ctx, llama_v2_token_data_array * candidates, float p, size_t min_keep); | |
| LLAMA_V2_API void llama_v2_sample_temperature(struct llama_v2_context * ctx, llama_v2_token_data_array * candidates, float temp); | |
| /// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words. | |
| /// @param candidates A vector of `llama_v2_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text. | |
| /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text. | |
| /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates. | |
| /// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm. | |
| /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal. | |
| LLAMA_V2_API llama_v2_token llama_v2_sample_token_mirostat(struct llama_v2_context * ctx, llama_v2_token_data_array * candidates, float tau, float eta, int m, float * mu); | |
| /// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words. | |
| /// @param candidates A vector of `llama_v2_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text. | |
| /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text. | |
| /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates. | |
| /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal. | |
| LLAMA_V2_API llama_v2_token llama_v2_sample_token_mirostat_v2(struct llama_v2_context * ctx, llama_v2_token_data_array * candidates, float tau, float eta, float * mu); | |
| /// @details Selects the token with the highest probability. | |
| LLAMA_V2_API llama_v2_token llama_v2_sample_token_greedy(struct llama_v2_context * ctx, llama_v2_token_data_array * candidates); | |
| /// @details Randomly selects a token from the candidates based on their probabilities. | |
| LLAMA_V2_API llama_v2_token llama_v2_sample_token(struct llama_v2_context * ctx, llama_v2_token_data_array * candidates); | |
| // Performance information | |
| LLAMA_V2_API void llama_v2_print_timings(struct llama_v2_context * ctx); | |
| LLAMA_V2_API void llama_v2_reset_timings(struct llama_v2_context * ctx); | |
| // Print system information | |
| LLAMA_V2_API const char * llama_v2_print_system_info(void); | |
| } | |
| // Internal API to be implemented by llama.cpp and used by tests/benchmarks only | |
| struct ggml_v2_tensor; | |
| std::vector<std::pair<std::string, struct ggml_v2_tensor *>>& llama_v2_internal_get_tensor_map(struct llama_v2_context * ctx); | |