Spaces:
Build error
Build error
| # this specific file adapted from https://github.com/tloen/alpaca-lora/blob/main/export_state_dict_checkpoint.py | |
| # under Apache 2.0 license https://raw.githubusercontent.com/tloen/alpaca-lora/main/LICENSE | |
| # todo: adapt to revert HF formats back to original PTH formats so ggml can convert them. | |
| import json | |
| import os | |
| import torch | |
| import transformers | |
| from peft import PeftModel | |
| from transformers import LlamaForCausalLM, LlamaTokenizer # noqa: E402 | |
| BASE_MODEL = os.environ.get("BASE_MODEL", None) | |
| assert ( | |
| BASE_MODEL | |
| ), "Please specify a value for BASE_MODEL environment variable, e.g. `export BASE_MODEL=decapoda-research/llama-7b-hf`" # noqa: E501 | |
| tokenizer = LlamaTokenizer.from_pretrained(BASE_MODEL) | |
| base_model = LlamaForCausalLM.from_pretrained( | |
| BASE_MODEL, | |
| load_in_8bit=False, | |
| torch_dtype=torch.float16, | |
| device_map={"": "cpu"}, | |
| ) | |
| lora_model = PeftModel.from_pretrained( | |
| base_model, | |
| "tloen/alpaca-lora-7b", | |
| device_map={"": "cpu"}, | |
| torch_dtype=torch.float16, | |
| ) | |
| # merge weights | |
| for layer in lora_model.base_model.model.model.layers: | |
| layer.self_attn.q_proj.merge_weights = True | |
| layer.self_attn.v_proj.merge_weights = True | |
| lora_model.train(False) | |
| lora_model_sd = lora_model.state_dict() | |
| params = { | |
| "dim": 4096, | |
| "multiple_of": 256, | |
| "n_heads": 32, | |
| "n_layers": 32, | |
| "norm_eps": 1e-06, | |
| "vocab_size": -1, | |
| } | |
| n_layers = params["n_layers"] | |
| n_heads = params["n_heads"] | |
| dim = params["dim"] | |
| dims_per_head = dim // n_heads | |
| base = 10000.0 | |
| inv_freq = 1.0 / ( | |
| base ** (torch.arange(0, dims_per_head, 2).float() / dims_per_head) | |
| ) | |
| def permute(w): | |
| return ( | |
| w.view(n_heads, dim // n_heads // 2, 2, dim) | |
| .transpose(1, 2) | |
| .reshape(dim, dim) | |
| ) | |
| def unpermute(w): | |
| return ( | |
| w.view(n_heads, 2, dim // n_heads // 2, dim) | |
| .transpose(1, 2) | |
| .reshape(dim, dim) | |
| ) | |
| def translate_state_dict_key(k): # noqa: C901 | |
| k = k.replace("base_model.model.", "") | |
| if k == "model.embed_tokens.weight": | |
| return "tok_embeddings.weight" | |
| elif k == "model.norm.weight": | |
| return "norm.weight" | |
| elif k == "lm_head.weight": | |
| return "output.weight" | |
| elif k.startswith("model.layers."): | |
| layer = k.split(".")[2] | |
| if k.endswith(".self_attn.q_proj.weight"): | |
| return f"layers.{layer}.attention.wq.weight" | |
| elif k.endswith(".self_attn.k_proj.weight"): | |
| return f"layers.{layer}.attention.wk.weight" | |
| elif k.endswith(".self_attn.v_proj.weight"): | |
| return f"layers.{layer}.attention.wv.weight" | |
| elif k.endswith(".self_attn.o_proj.weight"): | |
| return f"layers.{layer}.attention.wo.weight" | |
| elif k.endswith(".mlp.gate_proj.weight"): | |
| return f"layers.{layer}.feed_forward.w1.weight" | |
| elif k.endswith(".mlp.down_proj.weight"): | |
| return f"layers.{layer}.feed_forward.w2.weight" | |
| elif k.endswith(".mlp.up_proj.weight"): | |
| return f"layers.{layer}.feed_forward.w3.weight" | |
| elif k.endswith(".input_layernorm.weight"): | |
| return f"layers.{layer}.attention_norm.weight" | |
| elif k.endswith(".post_attention_layernorm.weight"): | |
| return f"layers.{layer}.ffn_norm.weight" | |
| elif k.endswith("rotary_emb.inv_freq") or "lora" in k: | |
| return None | |
| else: | |
| print(layer, k) | |
| raise NotImplementedError | |
| else: | |
| print(k) | |
| raise NotImplementedError | |
| new_state_dict = {} | |
| for k, v in lora_model_sd.items(): | |
| new_k = translate_state_dict_key(k) | |
| if new_k is not None: | |
| if "wq" in new_k or "wk" in new_k: | |
| new_state_dict[new_k] = unpermute(v) | |
| else: | |
| new_state_dict[new_k] = v | |
| os.makedirs("./ckpt", exist_ok=True) | |
| torch.save(new_state_dict, "./ckpt/consolidated.00.pth") | |
| with open("./ckpt/params.json", "w") as f: | |
| json.dump(params, f) |