Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from transformers import pipeline
|
| 3 |
+
import matplotlib.pyplot as plt
|
| 4 |
+
import json
|
| 5 |
+
import langdetect
|
| 6 |
+
from keybert import KeyBERT
|
| 7 |
+
|
| 8 |
+
# Load models with caching
|
| 9 |
+
@st.cache_resource
|
| 10 |
+
def load_models():
|
| 11 |
+
return {
|
| 12 |
+
"emotion": pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base", return_all_scores=True),
|
| 13 |
+
"sentiment": pipeline("sentiment-analysis"),
|
| 14 |
+
"summarization": pipeline("summarization"),
|
| 15 |
+
"ner": pipeline("ner", grouped_entities=True),
|
| 16 |
+
"toxicity": pipeline("text-classification", model="unitary/unbiased-toxic-roberta"),
|
| 17 |
+
"keyword_extraction": KeyBERT()
|
| 18 |
+
}
|
| 19 |
+
|
| 20 |
+
models=load_models()
|
| 21 |
+
|
| 22 |
+
# Function: Emotion Detection
|
| 23 |
+
def analyze_emotions(text):
|
| 24 |
+
results = models["emotion"](text)
|
| 25 |
+
emotions = {r['label']: round(r['score'], 2) for r in results[0]}
|
| 26 |
+
return emotions
|
| 27 |
+
|
| 28 |
+
# Function: Sentiment Analysis
|
| 29 |
+
def analyze_sentiment(text):
|
| 30 |
+
result = models["sentiment"](text)[0]
|
| 31 |
+
return {result['label']: round(result['score'], 2)}
|
| 32 |
+
|
| 33 |
+
# Function: Text Summarization
|
| 34 |
+
def summarize_text(text):
|
| 35 |
+
summary = models["summarization"](text["1024"])[0]['summary_text'] # Limit input to 1024 tokens
|
| 36 |
+
return summary
|
| 37 |
+
|
| 38 |
+
# Function: Keyword Extraction
|
| 39 |
+
def extract_keywords(text):
|
| 40 |
+
return models["keyword_extraction"].extract_keywords(text, keyphrase_ngram_range(1, 2), stop_words='english')
|
| 41 |
+
|
| 42 |
+
# Function: Named Entity Recognition (NER)
|
| 43 |
+
def analyze_ner(text):
|
| 44 |
+
entities = models["ner"](text)
|
| 45 |
+
return {entity["word"]: entity["entity_group"] for entity in entities}
|
| 46 |
+
|
| 47 |
+
# Function: Language Detection and Translation
|
| 48 |
+
def detect_language(text):
|
| 49 |
+
try:
|
| 50 |
+
lang = langdetect.detect(text)
|
| 51 |
+
return lang
|
| 52 |
+
except:
|
| 53 |
+
return "Error detecting language"
|
| 54 |
+
|
| 55 |
+
# Function: Toxicity Detection
|
| 56 |
+
def detect_toxicity(text):
|
| 57 |
+
results = models["toxicity"](text)
|
| 58 |
+
return {results[0]['label']: round(results[0]['score'], 2)}
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
# Streamlit UI
|
| 62 |
+
st.title("🚀 AI-Powered Text Intelligence App")
|
| 63 |
+
st.markdown("Analyze text with multiple NLP features: Emotion Detection, Sentiment Analysis, Summarization, NER, Keywords, Language Detection, and more!")
|
| 64 |
+
|
| 65 |
+
# User Input
|
| 66 |
+
text_input = st.text_area("Enter text to analyze:", "")
|
| 67 |
+
|
| 68 |
+
if st.button("Analyze Text"):
|
| 69 |
+
if text_input.strip():
|
| 70 |
+
st.subheader("🔹 Emotion Detection")
|
| 71 |
+
emotions = analyze_emotions(text_input)
|
| 72 |
+
st.json(emotions)
|
| 73 |
+
|
| 74 |
+
st.subheader("🔹 Sentiment Analysis")
|
| 75 |
+
sentiment = analyze_sentiment(text_input)
|
| 76 |
+
st.json(sentiment)
|
| 77 |
+
|
| 78 |
+
st.subheader("🔹 Text Summarization")
|
| 79 |
+
summary = summarize_text(text_input)
|
| 80 |
+
st.write(summary)
|
| 81 |
+
|
| 82 |
+
st.subheader("🔹 Keyword Extraction")
|
| 83 |
+
keywords = extract_keywords(text_input)
|
| 84 |
+
st.json(keywords)
|
| 85 |
+
|
| 86 |
+
st.subheader("🔹 Named Entity Recognition (NER)")
|
| 87 |
+
ner_data = analyze_ner(text_input)
|
| 88 |
+
st.json(ner_data)
|
| 89 |
+
|
| 90 |
+
st.subheader("🔹 Language Detection")
|
| 91 |
+
lang = detect_language(text_input)
|
| 92 |
+
st.write(f"Detected Language: `{lang}`")
|
| 93 |
+
|
| 94 |
+
st.subheader("🔹 Toxicity Detection")
|
| 95 |
+
toxicity = detect_toxicity(text_input)
|
| 96 |
+
st.json(toxicity)
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
# JSON Download
|
| 100 |
+
result_data = {
|
| 101 |
+
"emotion": emotions,
|
| 102 |
+
"sentiment": sentiment,
|
| 103 |
+
"summary": summary,
|
| 104 |
+
"keywords": keywords,
|
| 105 |
+
"ner": ner_data,
|
| 106 |
+
"language": lang,
|
| 107 |
+
"toxicity": toxicity
|
| 108 |
+
}
|
| 109 |
+
|
| 110 |
+
json_result = json.dumps(result_data, indent=2)
|
| 111 |
+
st.download_button("Download Analysis Report", data=json_result, file_name="text_analysis.json", mime="application/json")
|
| 112 |
+
else:
|
| 113 |
+
st.warning("⚠️ Please enter some text to analyze")
|