|
|
import gradio as gr |
|
|
import spaces |
|
|
import torch |
|
|
import diffusers |
|
|
import transformers |
|
|
import copy |
|
|
import random |
|
|
import numpy as np |
|
|
import torchvision.transforms as T |
|
|
import math |
|
|
import os |
|
|
import peft |
|
|
from peft import LoraConfig |
|
|
from safetensors import safe_open |
|
|
from omegaconf import OmegaConf |
|
|
from omnitry.models.transformer_flux import FluxTransformer2DModel |
|
|
from omnitry.pipelines.pipeline_flux_fill import FluxFillPipeline |
|
|
|
|
|
|
|
|
from huggingface_hub import snapshot_download |
|
|
snapshot_download(repo_id="Kunbyte/OmniTry", local_dir="./OmniTry") |
|
|
|
|
|
device = torch.device('cuda:0') |
|
|
weight_dtype = torch.bfloat16 |
|
|
args = OmegaConf.load('configs/omnitry_v1_unified.yaml') |
|
|
|
|
|
|
|
|
transformer = FluxTransformer2DModel.from_pretrained('black-forest-labs/FLUX.1-Fill-dev', subfolder='transformer').requires_grad_(False).to(device, dtype=weight_dtype) |
|
|
pipeline = FluxFillPipeline.from_pretrained( |
|
|
'black-forest-labs/FLUX.1-Fill-dev', |
|
|
transformer=transformer, |
|
|
torch_dtype=weight_dtype |
|
|
).to(device) |
|
|
|
|
|
|
|
|
|
|
|
lora_config = LoraConfig( |
|
|
r=args.lora_rank, |
|
|
lora_alpha=args.lora_alpha, |
|
|
init_lora_weights="gaussian", |
|
|
target_modules=[ |
|
|
'x_embedder', |
|
|
'attn.to_k', 'attn.to_q', 'attn.to_v', 'attn.to_out.0', |
|
|
'attn.add_k_proj', 'attn.add_q_proj', 'attn.add_v_proj', 'attn.to_add_out', |
|
|
'ff.net.0.proj', 'ff.net.2', 'ff_context.net.0.proj', 'ff_context.net.2', |
|
|
'norm1_context.linear', 'norm1.linear', 'norm.linear', 'proj_mlp', 'proj_out' |
|
|
] |
|
|
) |
|
|
transformer.add_adapter(lora_config, adapter_name='vtryon_lora') |
|
|
transformer.add_adapter(lora_config, adapter_name='garment_lora') |
|
|
|
|
|
with safe_open('OmniTry/omnitry_v1_unified.safetensors', framework="pt") as f: |
|
|
lora_weights = {k: f.get_tensor(k) for k in f.keys()} |
|
|
transformer.load_state_dict(lora_weights, strict=False) |
|
|
|
|
|
|
|
|
def create_hacked_forward(module): |
|
|
|
|
|
def lora_forward(self, active_adapter, x, *args, **kwargs): |
|
|
result = self.base_layer(x, *args, **kwargs) |
|
|
if active_adapter is not None: |
|
|
torch_result_dtype = result.dtype |
|
|
lora_A = self.lora_A[active_adapter] |
|
|
lora_B = self.lora_B[active_adapter] |
|
|
dropout = self.lora_dropout[active_adapter] |
|
|
scaling = self.scaling[active_adapter] |
|
|
x = x.to(lora_A.weight.dtype) |
|
|
result = result + lora_B(lora_A(dropout(x))) * scaling |
|
|
return result |
|
|
|
|
|
def hacked_lora_forward(self, x, *args, **kwargs): |
|
|
return torch.cat(( |
|
|
lora_forward(self, 'vtryon_lora', x[:1], *args, **kwargs), |
|
|
lora_forward(self, 'garment_lora', x[1:], *args, **kwargs), |
|
|
), dim=0) |
|
|
|
|
|
return hacked_lora_forward.__get__(module, type(module)) |
|
|
|
|
|
for n, m in transformer.named_modules(): |
|
|
if isinstance(m, peft.tuners.lora.layer.Linear): |
|
|
m.forward = create_hacked_forward(m) |
|
|
|
|
|
|
|
|
def seed_everything(seed=0): |
|
|
random.seed(seed) |
|
|
os.environ['PYTHONHASHSEED'] = str(seed) |
|
|
np.random.seed(seed) |
|
|
torch.manual_seed(seed) |
|
|
torch.cuda.manual_seed(seed) |
|
|
torch.cuda.manual_seed_all(seed) |
|
|
|
|
|
|
|
|
|
|
|
@spaces.GPU |
|
|
def generate(person_image, object_image, object_class, steps, guidance_scale, seed): |
|
|
|
|
|
if seed == -1: |
|
|
seed = random.randint(0, 2**32 - 1) |
|
|
seed_everything(seed) |
|
|
|
|
|
|
|
|
max_area = 1024 * 1024 |
|
|
oW = person_image.width |
|
|
oH = person_image.height |
|
|
|
|
|
ratio = math.sqrt(max_area / (oW * oH)) |
|
|
ratio = min(1, ratio) |
|
|
tW, tH = int(oW * ratio) // 16 * 16, int(oH * ratio) // 16 * 16 |
|
|
transform = T.Compose([ |
|
|
T.Resize((tH, tW)), |
|
|
T.ToTensor(), |
|
|
]) |
|
|
person_image = transform(person_image) |
|
|
|
|
|
|
|
|
ratio = min(tW / object_image.width, tH / object_image.height) |
|
|
transform = T.Compose([ |
|
|
T.Resize((int(object_image.height * ratio), int(object_image.width * ratio))), |
|
|
T.ToTensor(), |
|
|
]) |
|
|
object_image_padded = torch.ones_like(person_image) |
|
|
object_image = transform(object_image) |
|
|
new_h, new_w = object_image.shape[1], object_image.shape[2] |
|
|
min_x = (tW - new_w) // 2 |
|
|
min_y = (tH - new_h) // 2 |
|
|
object_image_padded[:, min_y: min_y + new_h, min_x: min_x + new_w] = object_image |
|
|
|
|
|
|
|
|
prompts = [args.object_map[object_class]] * 2 |
|
|
img_cond = torch.stack([person_image, object_image_padded]).to(dtype=weight_dtype, device=device) |
|
|
mask = torch.zeros_like(img_cond).to(img_cond) |
|
|
|
|
|
with torch.no_grad(): |
|
|
img = pipeline( |
|
|
prompt=prompts, |
|
|
height=tH, |
|
|
width=tW, |
|
|
img_cond=img_cond, |
|
|
mask=mask, |
|
|
guidance_scale=guidance_scale, |
|
|
num_inference_steps=steps, |
|
|
generator=torch.Generator(device).manual_seed(seed), |
|
|
).images[0] |
|
|
|
|
|
return img |
|
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
|
|
with gr.Blocks() as demo: |
|
|
gr.Markdown('# Demo of OmniTry') |
|
|
with gr.Row(): |
|
|
with gr.Column(): |
|
|
person_image = gr.Image(type="pil", label="Person Image", height=800) |
|
|
run_button = gr.Button(value="Submit", variant='primary') |
|
|
|
|
|
with gr.Column(): |
|
|
object_image = gr.Image(type="pil", label="Object Image", height=800) |
|
|
object_class = gr.Dropdown(label='Object Class', choices=args.object_map.keys()) |
|
|
|
|
|
with gr.Column(): |
|
|
image_out = gr.Image(type="pil", label="Output", height=800) |
|
|
|
|
|
with gr.Accordion("Advanced ⚙️", open=False): |
|
|
guidance_scale = gr.Slider(label="Guidance scale", minimum=1, maximum=50, value=30, step=0.1) |
|
|
steps = gr.Slider(label="Steps", minimum=1, maximum=50, value=20, step=1) |
|
|
seed = gr.Number(label="Seed", value=-1, precision=0) |
|
|
|
|
|
with gr.Row(): |
|
|
gr.Examples( |
|
|
examples=[ |
|
|
[ |
|
|
'./demo_example/person_top_cloth.jpg', |
|
|
'./demo_example/object_top_cloth.jpg', |
|
|
'top clothes', |
|
|
], |
|
|
[ |
|
|
'./demo_example/person_bottom_cloth.jpg', |
|
|
'./demo_example/object_bottom_cloth.jpg', |
|
|
'bottom clothes', |
|
|
], |
|
|
[ |
|
|
'./demo_example/person_dress.jpg', |
|
|
'./demo_example/object_dress.jpg', |
|
|
'dress', |
|
|
], |
|
|
[ |
|
|
'./demo_example/person_shoes.jpg', |
|
|
'./demo_example/object_shoes.jpg', |
|
|
'shoe', |
|
|
], |
|
|
[ |
|
|
'./demo_example/person_earrings.jpg', |
|
|
'./demo_example/object_earrings.jpg', |
|
|
'earrings', |
|
|
], |
|
|
[ |
|
|
'./demo_example/person_bracelet.jpg', |
|
|
'./demo_example/object_bracelet.jpg', |
|
|
'bracelet', |
|
|
], |
|
|
[ |
|
|
'./demo_example/person_necklace.jpg', |
|
|
'./demo_example/object_necklace.jpg', |
|
|
'necklace', |
|
|
], |
|
|
[ |
|
|
'./demo_example/person_ring.jpg', |
|
|
'./demo_example/object_ring.jpg', |
|
|
'ring', |
|
|
], |
|
|
[ |
|
|
'./demo_example/person_sunglasses.jpg', |
|
|
'./demo_example/object_sunglasses.jpg', |
|
|
'sunglasses', |
|
|
], |
|
|
[ |
|
|
'./demo_example/person_glasses.jpg', |
|
|
'./demo_example/object_glasses.jpg', |
|
|
'glasses', |
|
|
], |
|
|
[ |
|
|
'./demo_example/person_belt.jpg', |
|
|
'./demo_example/object_belt.jpg', |
|
|
'belt', |
|
|
], |
|
|
[ |
|
|
'./demo_example/person_bag.jpg', |
|
|
'./demo_example/object_bag.jpg', |
|
|
'bag', |
|
|
], |
|
|
[ |
|
|
'./demo_example/person_hat.jpg', |
|
|
'./demo_example/object_hat.jpg', |
|
|
'hat', |
|
|
], |
|
|
[ |
|
|
'./demo_example/person_tie.jpg', |
|
|
'./demo_example/object_tie.jpg', |
|
|
'tie', |
|
|
], |
|
|
[ |
|
|
'./demo_example/person_bowtie.jpg', |
|
|
'./demo_example/object_bowtie.jpg', |
|
|
'bow tie', |
|
|
], |
|
|
], |
|
|
|
|
|
inputs=[person_image, object_image, object_class], |
|
|
examples_per_page=100 |
|
|
) |
|
|
|
|
|
run_button.click(generate, inputs=[person_image, object_image, object_class, steps, guidance_scale, seed], outputs=[image_out]) |
|
|
|
|
|
demo.launch(server_name="0.0.0.0") |