Spaces:
Sleeping
Sleeping
Update text2vid_torch2.py
Browse files- text2vid_torch2.py +54 -32
text2vid_torch2.py
CHANGED
|
@@ -224,8 +224,9 @@ class AttnProcessor2_0:
|
|
| 224 |
return query, key, dynamic_lambda, key1
|
| 225 |
'''
|
| 226 |
|
| 227 |
-
|
| 228 |
-
|
|
|
|
| 229 |
r"""
|
| 230 |
Compute the attention scores.
|
| 231 |
Args:
|
|
@@ -240,45 +241,66 @@ class AttnProcessor2_0:
|
|
| 240 |
dynamic_lambda = None
|
| 241 |
key1 = None
|
| 242 |
|
| 243 |
-
|
| 244 |
-
if self.
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
dynamic_lambda = torch.tensor([1 + self.LAMBDA * (i/50) for i in range(self.num_frames)]).to(key.dtype).cuda()
|
| 253 |
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 261 |
|
| 262 |
-
|
| 263 |
-
query_slice_shape = query[i*all_dim:(i*all_dim) + target_size, :query_list.shape[1], :query_list.shape[2]].shape
|
| 264 |
-
query_list_slice_shape = query_list[i*batch_dim:i*batch_dim + target_size].shape
|
| 265 |
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 270 |
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
|
|
|
|
|
|
|
|
|
| 278 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 279 |
return query, key, dynamic_lambda, key1
|
| 280 |
|
| 281 |
|
|
|
|
|
|
|
| 282 |
def init_attention_func(unet):
|
| 283 |
|
| 284 |
for name, module in unet.named_modules():
|
|
|
|
| 224 |
return query, key, dynamic_lambda, key1
|
| 225 |
'''
|
| 226 |
|
| 227 |
+
import torch
|
| 228 |
+
|
| 229 |
+
def get_qk(self, query, key):
|
| 230 |
r"""
|
| 231 |
Compute the attention scores.
|
| 232 |
Args:
|
|
|
|
| 241 |
dynamic_lambda = None
|
| 242 |
key1 = None
|
| 243 |
|
| 244 |
+
try:
|
| 245 |
+
if self.use_last_attn_slice:
|
| 246 |
+
if self.last_attn_slice is not None:
|
| 247 |
+
|
| 248 |
+
query_list = self.last_attn_slice[0]
|
| 249 |
+
key_list = self.last_attn_slice[1]
|
| 250 |
+
|
| 251 |
+
if query.shape[1] == self.num_frames and query.shape == key.shape:
|
| 252 |
+
key1 = key.clone()
|
|
|
|
| 253 |
|
| 254 |
+
# Ensure the batch dimension of key1 and key_list match
|
| 255 |
+
batch_size_key1 = key1.shape[0]
|
| 256 |
+
batch_size_key_list = key_list.shape[0]
|
| 257 |
+
|
| 258 |
+
if batch_size_key1 != batch_size_key_list:
|
| 259 |
+
# Handle mismatch: either pad or slice to match sizes
|
| 260 |
+
if batch_size_key1 > batch_size_key_list:
|
| 261 |
+
# Pad key_list if key1 batch size is larger
|
| 262 |
+
padding = (0, 0, 0, batch_size_key1 - batch_size_key_list) # (left, right, top, bottom)
|
| 263 |
+
key_list = torch.nn.functional.pad(key_list, padding, "constant", 0)
|
| 264 |
+
else:
|
| 265 |
+
# Slice key1 if key_list batch size is larger
|
| 266 |
+
key1 = key1[:batch_size_key_list]
|
| 267 |
+
|
| 268 |
+
# Proceed with assignment after matching batch dimensions
|
| 269 |
+
key1[:,:1,:key_list.shape[2]] = key_list[:,:1]
|
| 270 |
|
| 271 |
+
dynamic_lambda = torch.tensor([1 + self.LAMBDA * (i/50) for i in range(self.num_frames)]).to(key.dtype).cuda()
|
|
|
|
|
|
|
| 272 |
|
| 273 |
+
if q_old.shape == k_old.shape and q_old.shape[1] != self.num_frames:
|
| 274 |
+
batch_dim = query_list.shape[0] // self.bs
|
| 275 |
+
all_dim = query.shape[0] // self.bs
|
| 276 |
+
for i in range(self.bs):
|
| 277 |
+
target_size = min(query[i*all_dim:(i*all_dim) + batch_dim, :query_list.shape[1], :query_list.shape[2]].size(0),
|
| 278 |
+
query_list[i*batch_dim:(i+1)*batch_dim].size(0))
|
| 279 |
+
query_slice_shape = query[i*all_dim:(i*all_dim) + target_size, :query_list.shape[1], :query_list.shape[2]].shape
|
| 280 |
+
query_list_slice_shape = query_list[i*batch_dim:i*batch_dim + target_size].shape
|
| 281 |
|
| 282 |
+
if query_slice_shape[1] != query_list_slice_shape[1]:
|
| 283 |
+
print(f"Warning: Dimension mismatch. query_slice_shape: {query_slice_shape}, query_list_slice_shape: {query_list_slice_shape}. Adjusting to compatible sizes.")
|
| 284 |
+
target_size = min(query_slice_shape[1], query_list_slice_shape[1])
|
| 285 |
|
| 286 |
+
query[i*all_dim:(i*all_dim) + target_size, :query_list.shape[1], :query_list.shape[2]] = \
|
| 287 |
+
query_list[i*batch_dim:i*batch_dim + target_size]
|
| 288 |
+
|
| 289 |
+
if self.save_last_attn_slice:
|
| 290 |
+
self.last_attn_slice = [query, key]
|
| 291 |
+
self.save_last_attn_slice = False
|
| 292 |
|
| 293 |
+
except RuntimeError as e:
|
| 294 |
+
# If a RuntimeError happens, catch it and clean CUDA memory
|
| 295 |
+
print(f"RuntimeError occurred: {e}. Cleaning up CUDA memory...")
|
| 296 |
+
torch.cuda.empty_cache()
|
| 297 |
+
raise # Re-raise the error to let the caller handle it further if needed
|
| 298 |
+
|
| 299 |
return query, key, dynamic_lambda, key1
|
| 300 |
|
| 301 |
|
| 302 |
+
|
| 303 |
+
|
| 304 |
def init_attention_func(unet):
|
| 305 |
|
| 306 |
for name, module in unet.named_modules():
|