Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -74,20 +74,28 @@ def calculate_cache_size(cache):
|
|
| 74 |
return total_memory /(1024*1024)
|
| 75 |
|
| 76 |
@st.cache_resource
|
| 77 |
-
def
|
| 78 |
-
model_name = "
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
|
|
|
| 83 |
)
|
|
|
|
| 84 |
model = AutoModelForCausalLM.from_pretrained(
|
| 85 |
model_name,
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
)
|
| 90 |
-
return
|
| 91 |
|
| 92 |
def clone_cache(cache):
|
| 93 |
new_cache = DynamicCache()
|
|
@@ -106,7 +114,8 @@ def load_document_and_cache(file_path):
|
|
| 106 |
model, tokenizer = load_model_and_tokenizer(doc_text_count)
|
| 107 |
system_prompt = f"""
|
| 108 |
<|system|>
|
| 109 |
-
|
|
|
|
| 110 |
<|user|>
|
| 111 |
Context:
|
| 112 |
{doc_text}
|
|
|
|
| 74 |
return total_memory /(1024*1024)
|
| 75 |
|
| 76 |
@st.cache_resource
|
| 77 |
+
def load_quantized_model_and_tokenizer():
|
| 78 |
+
model_name = "mistralai/Mistral-7B-Instruct-v0.1" # Configure quantization for 4-bit loading
|
| 79 |
+
quantization_config = BitsAndBytesConfig(
|
| 80 |
+
load_in_4bit=True, # Enable 4-bit quantization
|
| 81 |
+
bnb_4bit_compute_dtype=torch.float16, # Set computation precision
|
| 82 |
+
bnb_4bit_quant_type="nf4", # Use Normal Float 4 (NF4) quantization
|
| 83 |
+
bnb_4bit_use_double_quant=True, # Enable double quantization
|
| 84 |
)
|
| 85 |
+
# Load the pre-trained model with quantization
|
| 86 |
model = AutoModelForCausalLM.from_pretrained(
|
| 87 |
model_name,
|
| 88 |
+
device_map="auto", # Automatically allocate model to devices
|
| 89 |
+
quantization_config=quantization_config,
|
| 90 |
+
token=hf_token,
|
| 91 |
+
)
|
| 92 |
+
|
| 93 |
+
# Load the tokenizer
|
| 94 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 95 |
+
model_name,
|
| 96 |
+
token=hf_token,
|
| 97 |
)
|
| 98 |
+
return tokenizer, model
|
| 99 |
|
| 100 |
def clone_cache(cache):
|
| 101 |
new_cache = DynamicCache()
|
|
|
|
| 114 |
model, tokenizer = load_model_and_tokenizer(doc_text_count)
|
| 115 |
system_prompt = f"""
|
| 116 |
<|system|>
|
| 117 |
+
You are a helpful assistant. Provide concise, factual answers based only on the provided context.
|
| 118 |
+
If the information is not available, respond with: "I'm sorry, I don't have enough information to answer that."
|
| 119 |
<|user|>
|
| 120 |
Context:
|
| 121 |
{doc_text}
|