Spaces:
Runtime error
Runtime error
| import os | |
| from math import floor | |
| from typing import Optional | |
| import numpy as np | |
| import spaces | |
| import torch | |
| import gradio as gr | |
| from transformers import pipeline | |
| from transformers.pipelines.audio_utils import ffmpeg_read | |
| # configuration | |
| MODEL_NAME = "kotoba-tech/kotoba-whisper-v2.0" | |
| BATCH_SIZE = 16 | |
| CHUNK_LENGTH_S = 15 | |
| EXAMPLE = "./sample_diarization_japanese.mp3" | |
| # device setting | |
| if torch.cuda.is_available(): | |
| torch_dtype = torch.bfloat16 | |
| device = "cuda" | |
| model_kwargs = {'attn_implementation': 'sdpa'} | |
| else: | |
| torch_dtype = torch.float32 | |
| device = "cpu" | |
| model_kwargs = {} | |
| # define the pipeline | |
| pipe = pipeline( | |
| model=MODEL_NAME, | |
| chunk_length_s=CHUNK_LENGTH_S, | |
| batch_size=BATCH_SIZE, | |
| torch_dtype=torch_dtype, | |
| device=device, | |
| model_kwargs=model_kwargs, | |
| trust_remote_code=True | |
| ) | |
| def format_time(start: Optional[float], end: Optional[float]): | |
| def _format_time(seconds: Optional[float]): | |
| if seconds is None: | |
| return "complete " | |
| minutes = floor(seconds / 60) | |
| hours = floor(seconds / 3600) | |
| seconds = seconds - hours * 3600 - minutes * 60 | |
| m_seconds = floor(round(seconds - floor(seconds), 3) * 10 ** 3) | |
| seconds = floor(seconds) | |
| return f'{hours:02}:{minutes:02}:{seconds:02}.{m_seconds:03}' | |
| return f"[{_format_time(start)}-> {_format_time(end)}]:" | |
| def get_prediction(inputs, prompt: Optional[str]): | |
| generate_kwargs = {"language": "ja", "task": "transcribe"} | |
| if prompt: | |
| generate_kwargs['prompt_ids'] = pipe.tokenizer.get_prompt_ids(prompt, return_tensors='pt').to(device) | |
| prediction = pipe(inputs, return_timestamps=True, generate_kwargs=generate_kwargs) | |
| text = "".join([c['text'] for c in prediction['chunks']]) | |
| text_timestamped = "\n".join([f"{format_time(*c['timestamp'])} {c['text']}" for c in prediction['chunks']]) | |
| return text, text_timestamped | |
| def transcribe(inputs: str, prompt): | |
| if inputs is None: | |
| raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.") | |
| with open(inputs, "rb") as f: | |
| inputs = f.read() | |
| inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate) | |
| array_pad = np.zeros(int(pipe.feature_extractor.sampling_rate * 0.5)) | |
| inputs = np.concatenate([array_pad, inputs, array_pad]) | |
| inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate} | |
| return get_prediction(inputs, prompt) | |
| demo = gr.Blocks() | |
| description = (f"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses Kotoba-Whisper " | |
| f"checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio" | |
| f" files of arbitrary length.") | |
| title = f"Transcribe Audio with {os.path.basename(MODEL_NAME)}" | |
| mf_transcribe = gr.Interface( | |
| fn=transcribe, | |
| inputs=[ | |
| gr.Audio(sources="microphone", type="filepath"), | |
| gr.Textbox(lines=1, placeholder="Prompt"), | |
| ], | |
| outputs=["text", "text"], | |
| title=title, | |
| description=description, | |
| allow_flagging="never", | |
| examples=EXAMPLE | |
| ) | |
| file_transcribe = gr.Interface( | |
| fn=transcribe, | |
| inputs=[ | |
| gr.Audio(sources="upload", type="filepath", label="Audio file"), | |
| gr.Textbox(lines=1, placeholder="Prompt"), | |
| ], | |
| outputs=["text", "text"], | |
| title=title, | |
| description=description, | |
| allow_flagging="never", | |
| examples=EXAMPLE | |
| ) | |
| with demo: | |
| gr.TabbedInterface([mf_transcribe, file_transcribe], ["Microphone", "Audio file"]) | |
| demo.queue(api_open=False, default_concurrency_limit=40).launch(show_api=False, show_error=True) | |