Spaces:
				
			
			
	
			
			
		Running
		
			on 
			
			Zero
	
	
	
			
			
	
	
	
	
		
		
		Running
		
			on 
			
			Zero
	Upload kontext_pipeline.py
Browse files- kontext_pipeline.py +1088 -0
    	
        kontext_pipeline.py
    ADDED
    
    | @@ -0,0 +1,1088 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import inspect
         | 
| 2 | 
            +
            from typing import Any, Callable, Dict, List, Optional, Union
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            import numpy as np
         | 
| 5 | 
            +
            import torch
         | 
| 6 | 
            +
            from transformers import (
         | 
| 7 | 
            +
                CLIPImageProcessor,
         | 
| 8 | 
            +
                CLIPTextModel,
         | 
| 9 | 
            +
                CLIPTokenizer,
         | 
| 10 | 
            +
                CLIPVisionModelWithProjection,
         | 
| 11 | 
            +
                T5EncoderModel,
         | 
| 12 | 
            +
                T5TokenizerFast,
         | 
| 13 | 
            +
            )
         | 
| 14 | 
            +
             | 
| 15 | 
            +
            from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
         | 
| 16 | 
            +
            from diffusers.loaders import (
         | 
| 17 | 
            +
                FluxIPAdapterMixin,
         | 
| 18 | 
            +
                FluxLoraLoaderMixin,
         | 
| 19 | 
            +
                FromSingleFileMixin,
         | 
| 20 | 
            +
                TextualInversionLoaderMixin,
         | 
| 21 | 
            +
            )
         | 
| 22 | 
            +
            from diffusers.models import AutoencoderKL, FluxTransformer2DModel
         | 
| 23 | 
            +
            from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
         | 
| 24 | 
            +
            from diffusers.utils import (
         | 
| 25 | 
            +
                USE_PEFT_BACKEND,
         | 
| 26 | 
            +
                is_torch_xla_available,
         | 
| 27 | 
            +
                logging,
         | 
| 28 | 
            +
                replace_example_docstring,
         | 
| 29 | 
            +
                scale_lora_layers,
         | 
| 30 | 
            +
                unscale_lora_layers,
         | 
| 31 | 
            +
            )
         | 
| 32 | 
            +
             | 
| 33 | 
            +
            from diffusers.utils.torch_utils import randn_tensor
         | 
| 34 | 
            +
            from diffusers import DiffusionPipeline
         | 
| 35 | 
            +
             | 
| 36 | 
            +
            from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput
         | 
| 37 | 
            +
             | 
| 38 | 
            +
             | 
| 39 | 
            +
             | 
| 40 | 
            +
            if is_torch_xla_available():
         | 
| 41 | 
            +
                import torch_xla.core.xla_model as xm
         | 
| 42 | 
            +
             | 
| 43 | 
            +
                XLA_AVAILABLE = True
         | 
| 44 | 
            +
            else:
         | 
| 45 | 
            +
                XLA_AVAILABLE = False
         | 
| 46 | 
            +
             | 
| 47 | 
            +
             | 
| 48 | 
            +
            logger = logging.get_logger(__name__)  # pylint: disable=invalid-name
         | 
| 49 | 
            +
             | 
| 50 | 
            +
            EXAMPLE_DOC_STRING = """
         | 
| 51 | 
            +
                Examples:
         | 
| 52 | 
            +
                    ```py
         | 
| 53 | 
            +
                    # TODO
         | 
| 54 | 
            +
                    ```
         | 
| 55 | 
            +
            """
         | 
| 56 | 
            +
             | 
| 57 | 
            +
             | 
| 58 | 
            +
            PREFERRED_KONTEXT_RESOLUTIONS = [
         | 
| 59 | 
            +
                (672, 1568),
         | 
| 60 | 
            +
                (688, 1504),
         | 
| 61 | 
            +
                (720, 1456),
         | 
| 62 | 
            +
                (752, 1392),
         | 
| 63 | 
            +
                (800, 1328),
         | 
| 64 | 
            +
                (832, 1248),
         | 
| 65 | 
            +
                (880, 1184),
         | 
| 66 | 
            +
                (944, 1104),
         | 
| 67 | 
            +
                (1024, 1024),
         | 
| 68 | 
            +
                (1104, 944),
         | 
| 69 | 
            +
                (1184, 880),
         | 
| 70 | 
            +
                (1248, 832),
         | 
| 71 | 
            +
                (1328, 800),
         | 
| 72 | 
            +
                (1392, 752),
         | 
| 73 | 
            +
                (1456, 720),
         | 
| 74 | 
            +
                (1504, 688),
         | 
| 75 | 
            +
                (1568, 672),
         | 
| 76 | 
            +
            ]
         | 
| 77 | 
            +
             | 
| 78 | 
            +
             | 
| 79 | 
            +
            def calculate_shift(
         | 
| 80 | 
            +
                image_seq_len,
         | 
| 81 | 
            +
                base_seq_len: int = 256,
         | 
| 82 | 
            +
                max_seq_len: int = 4096,
         | 
| 83 | 
            +
                base_shift: float = 0.5,
         | 
| 84 | 
            +
                max_shift: float = 1.15,
         | 
| 85 | 
            +
            ):
         | 
| 86 | 
            +
                m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
         | 
| 87 | 
            +
                b = base_shift - m * base_seq_len
         | 
| 88 | 
            +
                mu = image_seq_len * m + b
         | 
| 89 | 
            +
                return mu
         | 
| 90 | 
            +
             | 
| 91 | 
            +
             | 
| 92 | 
            +
            # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
         | 
| 93 | 
            +
            def retrieve_timesteps(
         | 
| 94 | 
            +
                scheduler,
         | 
| 95 | 
            +
                num_inference_steps: Optional[int] = None,
         | 
| 96 | 
            +
                device: Optional[Union[str, torch.device]] = None,
         | 
| 97 | 
            +
                timesteps: Optional[List[int]] = None,
         | 
| 98 | 
            +
                sigmas: Optional[List[float]] = None,
         | 
| 99 | 
            +
                **kwargs,
         | 
| 100 | 
            +
            ):
         | 
| 101 | 
            +
                r"""
         | 
| 102 | 
            +
                Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
         | 
| 103 | 
            +
                custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
         | 
| 104 | 
            +
             | 
| 105 | 
            +
                Args:
         | 
| 106 | 
            +
                    scheduler (`SchedulerMixin`):
         | 
| 107 | 
            +
                        The scheduler to get timesteps from.
         | 
| 108 | 
            +
                    num_inference_steps (`int`):
         | 
| 109 | 
            +
                        The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
         | 
| 110 | 
            +
                        must be `None`.
         | 
| 111 | 
            +
                    device (`str` or `torch.device`, *optional*):
         | 
| 112 | 
            +
                        The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
         | 
| 113 | 
            +
                    timesteps (`List[int]`, *optional*):
         | 
| 114 | 
            +
                        Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
         | 
| 115 | 
            +
                        `num_inference_steps` and `sigmas` must be `None`.
         | 
| 116 | 
            +
                    sigmas (`List[float]`, *optional*):
         | 
| 117 | 
            +
                        Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
         | 
| 118 | 
            +
                        `num_inference_steps` and `timesteps` must be `None`.
         | 
| 119 | 
            +
             | 
| 120 | 
            +
                Returns:
         | 
| 121 | 
            +
                    `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
         | 
| 122 | 
            +
                    second element is the number of inference steps.
         | 
| 123 | 
            +
                """
         | 
| 124 | 
            +
                if timesteps is not None and sigmas is not None:
         | 
| 125 | 
            +
                    raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
         | 
| 126 | 
            +
                if timesteps is not None:
         | 
| 127 | 
            +
                    accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
         | 
| 128 | 
            +
                    if not accepts_timesteps:
         | 
| 129 | 
            +
                        raise ValueError(
         | 
| 130 | 
            +
                            f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
         | 
| 131 | 
            +
                            f" timestep schedules. Please check whether you are using the correct scheduler."
         | 
| 132 | 
            +
                        )
         | 
| 133 | 
            +
                    scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
         | 
| 134 | 
            +
                    timesteps = scheduler.timesteps
         | 
| 135 | 
            +
                    num_inference_steps = len(timesteps)
         | 
| 136 | 
            +
                elif sigmas is not None:
         | 
| 137 | 
            +
                    accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
         | 
| 138 | 
            +
                    if not accept_sigmas:
         | 
| 139 | 
            +
                        raise ValueError(
         | 
| 140 | 
            +
                            f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
         | 
| 141 | 
            +
                            f" sigmas schedules. Please check whether you are using the correct scheduler."
         | 
| 142 | 
            +
                        )
         | 
| 143 | 
            +
                    scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
         | 
| 144 | 
            +
                    timesteps = scheduler.timesteps
         | 
| 145 | 
            +
                    num_inference_steps = len(timesteps)
         | 
| 146 | 
            +
                else:
         | 
| 147 | 
            +
                    scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
         | 
| 148 | 
            +
                    timesteps = scheduler.timesteps
         | 
| 149 | 
            +
                return timesteps, num_inference_steps
         | 
| 150 | 
            +
             | 
| 151 | 
            +
             | 
| 152 | 
            +
            # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
         | 
| 153 | 
            +
            def retrieve_latents(
         | 
| 154 | 
            +
                encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
         | 
| 155 | 
            +
            ):
         | 
| 156 | 
            +
                if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
         | 
| 157 | 
            +
                    return encoder_output.latent_dist.sample(generator)
         | 
| 158 | 
            +
                elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
         | 
| 159 | 
            +
                    return encoder_output.latent_dist.mode()
         | 
| 160 | 
            +
                elif hasattr(encoder_output, "latents"):
         | 
| 161 | 
            +
                    return encoder_output.latents
         | 
| 162 | 
            +
                else:
         | 
| 163 | 
            +
                    raise AttributeError("Could not access latents of provided encoder_output")
         | 
| 164 | 
            +
             | 
| 165 | 
            +
             | 
| 166 | 
            +
            class FluxKontextPipeline(
         | 
| 167 | 
            +
                DiffusionPipeline,
         | 
| 168 | 
            +
                FluxLoraLoaderMixin,
         | 
| 169 | 
            +
                FromSingleFileMixin,
         | 
| 170 | 
            +
                TextualInversionLoaderMixin,
         | 
| 171 | 
            +
                FluxIPAdapterMixin,
         | 
| 172 | 
            +
            ):
         | 
| 173 | 
            +
                r"""
         | 
| 174 | 
            +
                The Flux Kontext pipeline for text-to-image generation.
         | 
| 175 | 
            +
             | 
| 176 | 
            +
                Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
         | 
| 177 | 
            +
             | 
| 178 | 
            +
                Args:
         | 
| 179 | 
            +
                    transformer ([`FluxTransformer2DModel`]):
         | 
| 180 | 
            +
                        Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
         | 
| 181 | 
            +
                    scheduler ([`FlowMatchEulerDiscreteScheduler`]):
         | 
| 182 | 
            +
                        A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
         | 
| 183 | 
            +
                    vae ([`AutoencoderKL`]):
         | 
| 184 | 
            +
                        Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
         | 
| 185 | 
            +
                    text_encoder ([`CLIPTextModel`]):
         | 
| 186 | 
            +
                        [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
         | 
| 187 | 
            +
                        the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
         | 
| 188 | 
            +
                    text_encoder_2 ([`T5EncoderModel`]):
         | 
| 189 | 
            +
                        [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
         | 
| 190 | 
            +
                        the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
         | 
| 191 | 
            +
                    tokenizer (`CLIPTokenizer`):
         | 
| 192 | 
            +
                        Tokenizer of class
         | 
| 193 | 
            +
                        [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
         | 
| 194 | 
            +
                    tokenizer_2 (`T5TokenizerFast`):
         | 
| 195 | 
            +
                        Second Tokenizer of class
         | 
| 196 | 
            +
                        [T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast).
         | 
| 197 | 
            +
                """
         | 
| 198 | 
            +
             | 
| 199 | 
            +
                model_cpu_offload_seq = "text_encoder->text_encoder_2->image_encoder->transformer->vae"
         | 
| 200 | 
            +
                _optional_components = ["image_encoder", "feature_extractor"]
         | 
| 201 | 
            +
                _callback_tensor_inputs = ["latents", "prompt_embeds"]
         | 
| 202 | 
            +
             | 
| 203 | 
            +
                def __init__(
         | 
| 204 | 
            +
                    self,
         | 
| 205 | 
            +
                    scheduler: FlowMatchEulerDiscreteScheduler,
         | 
| 206 | 
            +
                    vae: AutoencoderKL,
         | 
| 207 | 
            +
                    text_encoder: CLIPTextModel,
         | 
| 208 | 
            +
                    tokenizer: CLIPTokenizer,
         | 
| 209 | 
            +
                    text_encoder_2: T5EncoderModel,
         | 
| 210 | 
            +
                    tokenizer_2: T5TokenizerFast,
         | 
| 211 | 
            +
                    transformer: FluxTransformer2DModel,
         | 
| 212 | 
            +
                    image_encoder: CLIPVisionModelWithProjection = None,
         | 
| 213 | 
            +
                    feature_extractor: CLIPImageProcessor = None,
         | 
| 214 | 
            +
                ):
         | 
| 215 | 
            +
                    super().__init__()
         | 
| 216 | 
            +
             | 
| 217 | 
            +
                    self.register_modules(
         | 
| 218 | 
            +
                        vae=vae,
         | 
| 219 | 
            +
                        text_encoder=text_encoder,
         | 
| 220 | 
            +
                        text_encoder_2=text_encoder_2,
         | 
| 221 | 
            +
                        tokenizer=tokenizer,
         | 
| 222 | 
            +
                        tokenizer_2=tokenizer_2,
         | 
| 223 | 
            +
                        transformer=transformer,
         | 
| 224 | 
            +
                        scheduler=scheduler,
         | 
| 225 | 
            +
                        image_encoder=image_encoder,
         | 
| 226 | 
            +
                        feature_extractor=feature_extractor,
         | 
| 227 | 
            +
                    )
         | 
| 228 | 
            +
                    self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
         | 
| 229 | 
            +
                    # Flux latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible
         | 
| 230 | 
            +
                    # by the patch size. So the vae scale factor is multiplied by the patch size to account for this
         | 
| 231 | 
            +
                    self.latent_channels = self.vae.config.latent_channels if getattr(self, "vae", None) else 16
         | 
| 232 | 
            +
                    self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2)
         | 
| 233 | 
            +
                    self.tokenizer_max_length = (
         | 
| 234 | 
            +
                        self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
         | 
| 235 | 
            +
                    )
         | 
| 236 | 
            +
                    self.default_sample_size = 128
         | 
| 237 | 
            +
             | 
| 238 | 
            +
                def _get_t5_prompt_embeds(
         | 
| 239 | 
            +
                    self,
         | 
| 240 | 
            +
                    prompt: Union[str, List[str]] = None,
         | 
| 241 | 
            +
                    num_images_per_prompt: int = 1,
         | 
| 242 | 
            +
                    max_sequence_length: int = 512,
         | 
| 243 | 
            +
                    device: Optional[torch.device] = None,
         | 
| 244 | 
            +
                    dtype: Optional[torch.dtype] = None,
         | 
| 245 | 
            +
                ):
         | 
| 246 | 
            +
                    device = device or self._execution_device
         | 
| 247 | 
            +
                    dtype = dtype or self.text_encoder.dtype
         | 
| 248 | 
            +
             | 
| 249 | 
            +
                    prompt = [prompt] if isinstance(prompt, str) else prompt
         | 
| 250 | 
            +
                    batch_size = len(prompt)
         | 
| 251 | 
            +
             | 
| 252 | 
            +
                    if isinstance(self, TextualInversionLoaderMixin):
         | 
| 253 | 
            +
                        prompt = self.maybe_convert_prompt(prompt, self.tokenizer_2)
         | 
| 254 | 
            +
             | 
| 255 | 
            +
                    text_inputs = self.tokenizer_2(
         | 
| 256 | 
            +
                        prompt,
         | 
| 257 | 
            +
                        padding="max_length",
         | 
| 258 | 
            +
                        max_length=max_sequence_length,
         | 
| 259 | 
            +
                        truncation=True,
         | 
| 260 | 
            +
                        return_length=False,
         | 
| 261 | 
            +
                        return_overflowing_tokens=False,
         | 
| 262 | 
            +
                        return_tensors="pt",
         | 
| 263 | 
            +
                    )
         | 
| 264 | 
            +
                    text_input_ids = text_inputs.input_ids
         | 
| 265 | 
            +
                    untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids
         | 
| 266 | 
            +
             | 
| 267 | 
            +
                    if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
         | 
| 268 | 
            +
                        removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
         | 
| 269 | 
            +
                        logger.warning(
         | 
| 270 | 
            +
                            "The following part of your input was truncated because `max_sequence_length` is set to "
         | 
| 271 | 
            +
                            f" {max_sequence_length} tokens: {removed_text}"
         | 
| 272 | 
            +
                        )
         | 
| 273 | 
            +
             | 
| 274 | 
            +
                    prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0]
         | 
| 275 | 
            +
             | 
| 276 | 
            +
                    dtype = self.text_encoder_2.dtype
         | 
| 277 | 
            +
                    prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
         | 
| 278 | 
            +
             | 
| 279 | 
            +
                    _, seq_len, _ = prompt_embeds.shape
         | 
| 280 | 
            +
             | 
| 281 | 
            +
                    # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
         | 
| 282 | 
            +
                    prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
         | 
| 283 | 
            +
                    prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
         | 
| 284 | 
            +
             | 
| 285 | 
            +
                    return prompt_embeds
         | 
| 286 | 
            +
             | 
| 287 | 
            +
                def _get_clip_prompt_embeds(
         | 
| 288 | 
            +
                    self,
         | 
| 289 | 
            +
                    prompt: Union[str, List[str]],
         | 
| 290 | 
            +
                    num_images_per_prompt: int = 1,
         | 
| 291 | 
            +
                    device: Optional[torch.device] = None,
         | 
| 292 | 
            +
                ):
         | 
| 293 | 
            +
                    device = device or self._execution_device
         | 
| 294 | 
            +
             | 
| 295 | 
            +
                    prompt = [prompt] if isinstance(prompt, str) else prompt
         | 
| 296 | 
            +
                    batch_size = len(prompt)
         | 
| 297 | 
            +
             | 
| 298 | 
            +
                    if isinstance(self, TextualInversionLoaderMixin):
         | 
| 299 | 
            +
                        prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
         | 
| 300 | 
            +
             | 
| 301 | 
            +
                    text_inputs = self.tokenizer(
         | 
| 302 | 
            +
                        prompt,
         | 
| 303 | 
            +
                        padding="max_length",
         | 
| 304 | 
            +
                        max_length=self.tokenizer_max_length,
         | 
| 305 | 
            +
                        truncation=True,
         | 
| 306 | 
            +
                        return_overflowing_tokens=False,
         | 
| 307 | 
            +
                        return_length=False,
         | 
| 308 | 
            +
                        return_tensors="pt",
         | 
| 309 | 
            +
                    )
         | 
| 310 | 
            +
             | 
| 311 | 
            +
                    text_input_ids = text_inputs.input_ids
         | 
| 312 | 
            +
                    untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
         | 
| 313 | 
            +
                    if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
         | 
| 314 | 
            +
                        removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
         | 
| 315 | 
            +
                        logger.warning(
         | 
| 316 | 
            +
                            "The following part of your input was truncated because CLIP can only handle sequences up to"
         | 
| 317 | 
            +
                            f" {self.tokenizer_max_length} tokens: {removed_text}"
         | 
| 318 | 
            +
                        )
         | 
| 319 | 
            +
                    prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False)
         | 
| 320 | 
            +
             | 
| 321 | 
            +
                    # Use pooled output of CLIPTextModel
         | 
| 322 | 
            +
                    prompt_embeds = prompt_embeds.pooler_output
         | 
| 323 | 
            +
                    prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
         | 
| 324 | 
            +
             | 
| 325 | 
            +
                    # duplicate text embeddings for each generation per prompt, using mps friendly method
         | 
| 326 | 
            +
                    prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt)
         | 
| 327 | 
            +
                    prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)
         | 
| 328 | 
            +
             | 
| 329 | 
            +
                    return prompt_embeds
         | 
| 330 | 
            +
             | 
| 331 | 
            +
                def encode_prompt(
         | 
| 332 | 
            +
                    self,
         | 
| 333 | 
            +
                    prompt: Union[str, List[str]],
         | 
| 334 | 
            +
                    prompt_2: Union[str, List[str]],
         | 
| 335 | 
            +
                    device: Optional[torch.device] = None,
         | 
| 336 | 
            +
                    num_images_per_prompt: int = 1,
         | 
| 337 | 
            +
                    prompt_embeds: Optional[torch.FloatTensor] = None,
         | 
| 338 | 
            +
                    pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
         | 
| 339 | 
            +
                    max_sequence_length: int = 512,
         | 
| 340 | 
            +
                    lora_scale: Optional[float] = None,
         | 
| 341 | 
            +
                ):
         | 
| 342 | 
            +
                    r"""
         | 
| 343 | 
            +
             | 
| 344 | 
            +
                    Args:
         | 
| 345 | 
            +
                        prompt (`str` or `List[str]`, *optional*):
         | 
| 346 | 
            +
                            prompt to be encoded
         | 
| 347 | 
            +
                        prompt_2 (`str` or `List[str]`, *optional*):
         | 
| 348 | 
            +
                            The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
         | 
| 349 | 
            +
                            used in all text-encoders
         | 
| 350 | 
            +
                        device: (`torch.device`):
         | 
| 351 | 
            +
                            torch device
         | 
| 352 | 
            +
                        num_images_per_prompt (`int`):
         | 
| 353 | 
            +
                            number of images that should be generated per prompt
         | 
| 354 | 
            +
                        prompt_embeds (`torch.FloatTensor`, *optional*):
         | 
| 355 | 
            +
                            Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
         | 
| 356 | 
            +
                            provided, text embeddings will be generated from `prompt` input argument.
         | 
| 357 | 
            +
                        pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
         | 
| 358 | 
            +
                            Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
         | 
| 359 | 
            +
                            If not provided, pooled text embeddings will be generated from `prompt` input argument.
         | 
| 360 | 
            +
                        lora_scale (`float`, *optional*):
         | 
| 361 | 
            +
                            A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
         | 
| 362 | 
            +
                    """
         | 
| 363 | 
            +
                    device = device or self._execution_device
         | 
| 364 | 
            +
             | 
| 365 | 
            +
                    # set lora scale so that monkey patched LoRA
         | 
| 366 | 
            +
                    # function of text encoder can correctly access it
         | 
| 367 | 
            +
                    if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin):
         | 
| 368 | 
            +
                        self._lora_scale = lora_scale
         | 
| 369 | 
            +
             | 
| 370 | 
            +
                        # dynamically adjust the LoRA scale
         | 
| 371 | 
            +
                        if self.text_encoder is not None and USE_PEFT_BACKEND:
         | 
| 372 | 
            +
                            scale_lora_layers(self.text_encoder, lora_scale)
         | 
| 373 | 
            +
                        if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
         | 
| 374 | 
            +
                            scale_lora_layers(self.text_encoder_2, lora_scale)
         | 
| 375 | 
            +
             | 
| 376 | 
            +
                    prompt = [prompt] if isinstance(prompt, str) else prompt
         | 
| 377 | 
            +
             | 
| 378 | 
            +
                    if prompt_embeds is None:
         | 
| 379 | 
            +
                        prompt_2 = prompt_2 or prompt
         | 
| 380 | 
            +
                        prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
         | 
| 381 | 
            +
             | 
| 382 | 
            +
                        # We only use the pooled prompt output from the CLIPTextModel
         | 
| 383 | 
            +
                        pooled_prompt_embeds = self._get_clip_prompt_embeds(
         | 
| 384 | 
            +
                            prompt=prompt,
         | 
| 385 | 
            +
                            device=device,
         | 
| 386 | 
            +
                            num_images_per_prompt=num_images_per_prompt,
         | 
| 387 | 
            +
                        )
         | 
| 388 | 
            +
                        prompt_embeds = self._get_t5_prompt_embeds(
         | 
| 389 | 
            +
                            prompt=prompt_2,
         | 
| 390 | 
            +
                            num_images_per_prompt=num_images_per_prompt,
         | 
| 391 | 
            +
                            max_sequence_length=max_sequence_length,
         | 
| 392 | 
            +
                            device=device,
         | 
| 393 | 
            +
                        )
         | 
| 394 | 
            +
             | 
| 395 | 
            +
                    if self.text_encoder is not None:
         | 
| 396 | 
            +
                        if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
         | 
| 397 | 
            +
                            # Retrieve the original scale by scaling back the LoRA layers
         | 
| 398 | 
            +
                            unscale_lora_layers(self.text_encoder, lora_scale)
         | 
| 399 | 
            +
             | 
| 400 | 
            +
                    if self.text_encoder_2 is not None:
         | 
| 401 | 
            +
                        if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
         | 
| 402 | 
            +
                            # Retrieve the original scale by scaling back the LoRA layers
         | 
| 403 | 
            +
                            unscale_lora_layers(self.text_encoder_2, lora_scale)
         | 
| 404 | 
            +
             | 
| 405 | 
            +
                    dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype
         | 
| 406 | 
            +
                    text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)
         | 
| 407 | 
            +
             | 
| 408 | 
            +
                    return prompt_embeds, pooled_prompt_embeds, text_ids
         | 
| 409 | 
            +
             | 
| 410 | 
            +
                def encode_image(self, image, device, num_images_per_prompt):
         | 
| 411 | 
            +
                    dtype = next(self.image_encoder.parameters()).dtype
         | 
| 412 | 
            +
             | 
| 413 | 
            +
                    if not isinstance(image, torch.Tensor):
         | 
| 414 | 
            +
                        image = self.feature_extractor(image, return_tensors="pt").pixel_values
         | 
| 415 | 
            +
             | 
| 416 | 
            +
                    image = image.to(device=device, dtype=dtype)
         | 
| 417 | 
            +
                    image_embeds = self.image_encoder(image).image_embeds
         | 
| 418 | 
            +
                    image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
         | 
| 419 | 
            +
                    return image_embeds
         | 
| 420 | 
            +
             | 
| 421 | 
            +
                def prepare_ip_adapter_image_embeds(
         | 
| 422 | 
            +
                    self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt
         | 
| 423 | 
            +
                ):
         | 
| 424 | 
            +
                    image_embeds = []
         | 
| 425 | 
            +
                    if ip_adapter_image_embeds is None:
         | 
| 426 | 
            +
                        if not isinstance(ip_adapter_image, list):
         | 
| 427 | 
            +
                            ip_adapter_image = [ip_adapter_image]
         | 
| 428 | 
            +
             | 
| 429 | 
            +
                        if len(ip_adapter_image) != self.transformer.encoder_hid_proj.num_ip_adapters:
         | 
| 430 | 
            +
                            raise ValueError(
         | 
| 431 | 
            +
                                f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {self.transformer.encoder_hid_proj.num_ip_adapters} IP Adapters."
         | 
| 432 | 
            +
                            )
         | 
| 433 | 
            +
             | 
| 434 | 
            +
                        for single_ip_adapter_image in ip_adapter_image:
         | 
| 435 | 
            +
                            single_image_embeds = self.encode_image(single_ip_adapter_image, device, 1)
         | 
| 436 | 
            +
                            image_embeds.append(single_image_embeds[None, :])
         | 
| 437 | 
            +
                    else:
         | 
| 438 | 
            +
                        if not isinstance(ip_adapter_image_embeds, list):
         | 
| 439 | 
            +
                            ip_adapter_image_embeds = [ip_adapter_image_embeds]
         | 
| 440 | 
            +
             | 
| 441 | 
            +
                        if len(ip_adapter_image_embeds) != self.transformer.encoder_hid_proj.num_ip_adapters:
         | 
| 442 | 
            +
                            raise ValueError(
         | 
| 443 | 
            +
                                f"`ip_adapter_image_embeds` must have same length as the number of IP Adapters. Got {len(ip_adapter_image_embeds)} image embeds and {self.transformer.encoder_hid_proj.num_ip_adapters} IP Adapters."
         | 
| 444 | 
            +
                            )
         | 
| 445 | 
            +
             | 
| 446 | 
            +
                        for single_image_embeds in ip_adapter_image_embeds:
         | 
| 447 | 
            +
                            image_embeds.append(single_image_embeds)
         | 
| 448 | 
            +
             | 
| 449 | 
            +
                    ip_adapter_image_embeds = []
         | 
| 450 | 
            +
                    for single_image_embeds in image_embeds:
         | 
| 451 | 
            +
                        single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
         | 
| 452 | 
            +
                        single_image_embeds = single_image_embeds.to(device=device)
         | 
| 453 | 
            +
                        ip_adapter_image_embeds.append(single_image_embeds)
         | 
| 454 | 
            +
             | 
| 455 | 
            +
                    return ip_adapter_image_embeds
         | 
| 456 | 
            +
             | 
| 457 | 
            +
                def check_inputs(
         | 
| 458 | 
            +
                    self,
         | 
| 459 | 
            +
                    prompt,
         | 
| 460 | 
            +
                    prompt_2,
         | 
| 461 | 
            +
                    height,
         | 
| 462 | 
            +
                    width,
         | 
| 463 | 
            +
                    negative_prompt=None,
         | 
| 464 | 
            +
                    negative_prompt_2=None,
         | 
| 465 | 
            +
                    prompt_embeds=None,
         | 
| 466 | 
            +
                    negative_prompt_embeds=None,
         | 
| 467 | 
            +
                    pooled_prompt_embeds=None,
         | 
| 468 | 
            +
                    negative_pooled_prompt_embeds=None,
         | 
| 469 | 
            +
                    callback_on_step_end_tensor_inputs=None,
         | 
| 470 | 
            +
                    max_sequence_length=None,
         | 
| 471 | 
            +
                ):
         | 
| 472 | 
            +
                    if height % (self.vae_scale_factor * 2) != 0 or width % (self.vae_scale_factor * 2) != 0:
         | 
| 473 | 
            +
                        logger.warning(
         | 
| 474 | 
            +
                            f"`height` and `width` have to be divisible by {self.vae_scale_factor * 2} but are {height} and {width}. Dimensions will be resized accordingly"
         | 
| 475 | 
            +
                        )
         | 
| 476 | 
            +
             | 
| 477 | 
            +
                    if callback_on_step_end_tensor_inputs is not None and not all(
         | 
| 478 | 
            +
                        k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
         | 
| 479 | 
            +
                    ):
         | 
| 480 | 
            +
                        raise ValueError(
         | 
| 481 | 
            +
                            f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
         | 
| 482 | 
            +
                        )
         | 
| 483 | 
            +
             | 
| 484 | 
            +
                    if prompt is not None and prompt_embeds is not None:
         | 
| 485 | 
            +
                        raise ValueError(
         | 
| 486 | 
            +
                            f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
         | 
| 487 | 
            +
                            " only forward one of the two."
         | 
| 488 | 
            +
                        )
         | 
| 489 | 
            +
                    elif prompt_2 is not None and prompt_embeds is not None:
         | 
| 490 | 
            +
                        raise ValueError(
         | 
| 491 | 
            +
                            f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
         | 
| 492 | 
            +
                            " only forward one of the two."
         | 
| 493 | 
            +
                        )
         | 
| 494 | 
            +
                    elif prompt is None and prompt_embeds is None:
         | 
| 495 | 
            +
                        raise ValueError(
         | 
| 496 | 
            +
                            "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
         | 
| 497 | 
            +
                        )
         | 
| 498 | 
            +
                    elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
         | 
| 499 | 
            +
                        raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
         | 
| 500 | 
            +
                    elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
         | 
| 501 | 
            +
                        raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
         | 
| 502 | 
            +
             | 
| 503 | 
            +
                    if negative_prompt is not None and negative_prompt_embeds is not None:
         | 
| 504 | 
            +
                        raise ValueError(
         | 
| 505 | 
            +
                            f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
         | 
| 506 | 
            +
                            f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
         | 
| 507 | 
            +
                        )
         | 
| 508 | 
            +
                    elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
         | 
| 509 | 
            +
                        raise ValueError(
         | 
| 510 | 
            +
                            f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
         | 
| 511 | 
            +
                            f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
         | 
| 512 | 
            +
                        )
         | 
| 513 | 
            +
             | 
| 514 | 
            +
                    if prompt_embeds is not None and pooled_prompt_embeds is None:
         | 
| 515 | 
            +
                        raise ValueError(
         | 
| 516 | 
            +
                            "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
         | 
| 517 | 
            +
                        )
         | 
| 518 | 
            +
                    if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
         | 
| 519 | 
            +
                        raise ValueError(
         | 
| 520 | 
            +
                            "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
         | 
| 521 | 
            +
                        )
         | 
| 522 | 
            +
             | 
| 523 | 
            +
                    if max_sequence_length is not None and max_sequence_length > 512:
         | 
| 524 | 
            +
                        raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")
         | 
| 525 | 
            +
             | 
| 526 | 
            +
                @staticmethod
         | 
| 527 | 
            +
                def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
         | 
| 528 | 
            +
                    latent_image_ids = torch.zeros(height, width, 3)
         | 
| 529 | 
            +
                    latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height)[:, None]
         | 
| 530 | 
            +
                    latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width)[None, :]
         | 
| 531 | 
            +
             | 
| 532 | 
            +
                    latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
         | 
| 533 | 
            +
             | 
| 534 | 
            +
                    latent_image_ids = latent_image_ids.reshape(
         | 
| 535 | 
            +
                        latent_image_id_height * latent_image_id_width, latent_image_id_channels
         | 
| 536 | 
            +
                    )
         | 
| 537 | 
            +
             | 
| 538 | 
            +
                    return latent_image_ids.to(device=device, dtype=dtype)
         | 
| 539 | 
            +
             | 
| 540 | 
            +
                @staticmethod
         | 
| 541 | 
            +
                def _pack_latents(latents, batch_size, num_channels_latents, height, width):
         | 
| 542 | 
            +
                    latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
         | 
| 543 | 
            +
                    latents = latents.permute(0, 2, 4, 1, 3, 5)
         | 
| 544 | 
            +
                    latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)
         | 
| 545 | 
            +
             | 
| 546 | 
            +
                    return latents
         | 
| 547 | 
            +
             | 
| 548 | 
            +
                @staticmethod
         | 
| 549 | 
            +
                def _unpack_latents(latents, height, width, vae_scale_factor):
         | 
| 550 | 
            +
                    batch_size, num_patches, channels = latents.shape
         | 
| 551 | 
            +
             | 
| 552 | 
            +
                    # VAE applies 8x compression on images but we must also account for packing which requires
         | 
| 553 | 
            +
                    # latent height and width to be divisible by 2.
         | 
| 554 | 
            +
                    height = 2 * (int(height) // (vae_scale_factor * 2))
         | 
| 555 | 
            +
                    width = 2 * (int(width) // (vae_scale_factor * 2))
         | 
| 556 | 
            +
             | 
| 557 | 
            +
                    latents = latents.view(batch_size, height // 2, width // 2, channels // 4, 2, 2)
         | 
| 558 | 
            +
                    latents = latents.permute(0, 3, 1, 4, 2, 5)
         | 
| 559 | 
            +
             | 
| 560 | 
            +
                    latents = latents.reshape(batch_size, channels // (2 * 2), height, width)
         | 
| 561 | 
            +
             | 
| 562 | 
            +
                    return latents
         | 
| 563 | 
            +
             | 
| 564 | 
            +
                # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_inpaint.StableDiffusion3InpaintPipeline._encode_vae_image
         | 
| 565 | 
            +
                def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
         | 
| 566 | 
            +
                    if isinstance(generator, list):
         | 
| 567 | 
            +
                        image_latents = [
         | 
| 568 | 
            +
                            retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
         | 
| 569 | 
            +
                            for i in range(image.shape[0])
         | 
| 570 | 
            +
                        ]
         | 
| 571 | 
            +
                        image_latents = torch.cat(image_latents, dim=0)
         | 
| 572 | 
            +
                    else:
         | 
| 573 | 
            +
                        image_latents = retrieve_latents(self.vae.encode(image), generator=generator)
         | 
| 574 | 
            +
             | 
| 575 | 
            +
                    image_latents = (image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
         | 
| 576 | 
            +
             | 
| 577 | 
            +
                    return image_latents
         | 
| 578 | 
            +
             | 
| 579 | 
            +
                def enable_vae_slicing(self):
         | 
| 580 | 
            +
                    r"""
         | 
| 581 | 
            +
                    Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
         | 
| 582 | 
            +
                    compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
         | 
| 583 | 
            +
                    """
         | 
| 584 | 
            +
                    self.vae.enable_slicing()
         | 
| 585 | 
            +
             | 
| 586 | 
            +
                def disable_vae_slicing(self):
         | 
| 587 | 
            +
                    r"""
         | 
| 588 | 
            +
                    Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
         | 
| 589 | 
            +
                    computing decoding in one step.
         | 
| 590 | 
            +
                    """
         | 
| 591 | 
            +
                    self.vae.disable_slicing()
         | 
| 592 | 
            +
             | 
| 593 | 
            +
                def enable_vae_tiling(self):
         | 
| 594 | 
            +
                    r"""
         | 
| 595 | 
            +
                    Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
         | 
| 596 | 
            +
                    compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
         | 
| 597 | 
            +
                    processing larger images.
         | 
| 598 | 
            +
                    """
         | 
| 599 | 
            +
                    self.vae.enable_tiling()
         | 
| 600 | 
            +
             | 
| 601 | 
            +
                def disable_vae_tiling(self):
         | 
| 602 | 
            +
                    r"""
         | 
| 603 | 
            +
                    Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
         | 
| 604 | 
            +
                    computing decoding in one step.
         | 
| 605 | 
            +
                    """
         | 
| 606 | 
            +
                    self.vae.disable_tiling()
         | 
| 607 | 
            +
             | 
| 608 | 
            +
                def prepare_latents(
         | 
| 609 | 
            +
                    self,
         | 
| 610 | 
            +
                    image: torch.Tensor,
         | 
| 611 | 
            +
                    batch_size: int,
         | 
| 612 | 
            +
                    num_channels_latents: int,
         | 
| 613 | 
            +
                    height: int,
         | 
| 614 | 
            +
                    width: int,
         | 
| 615 | 
            +
                    dtype: torch.dtype,
         | 
| 616 | 
            +
                    device: torch.device,
         | 
| 617 | 
            +
                    generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
         | 
| 618 | 
            +
                    latents: Optional[torch.Tensor] = None,
         | 
| 619 | 
            +
                ):
         | 
| 620 | 
            +
                    if isinstance(generator, list) and len(generator) != batch_size:
         | 
| 621 | 
            +
                        raise ValueError(
         | 
| 622 | 
            +
                            f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
         | 
| 623 | 
            +
                            f" size of {batch_size}. Make sure the batch size matches the length of the generators."
         | 
| 624 | 
            +
                        )
         | 
| 625 | 
            +
             | 
| 626 | 
            +
                    # VAE applies 8x compression on images but we must also account for packing which requires
         | 
| 627 | 
            +
                    # latent height and width to be divisible by 2.
         | 
| 628 | 
            +
                    height = 2 * (int(height) // (self.vae_scale_factor * 2))
         | 
| 629 | 
            +
                    width = 2 * (int(width) // (self.vae_scale_factor * 2))
         | 
| 630 | 
            +
                    shape = (batch_size, num_channels_latents, height, width)
         | 
| 631 | 
            +
             | 
| 632 | 
            +
                    image = image.to(device=device, dtype=dtype)
         | 
| 633 | 
            +
                    if image.shape[1] != self.latent_channels:
         | 
| 634 | 
            +
                        image_latents = self._encode_vae_image(image=image, generator=generator)
         | 
| 635 | 
            +
                    else:
         | 
| 636 | 
            +
                        image_latents = image
         | 
| 637 | 
            +
                    if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0:
         | 
| 638 | 
            +
                        # expand init_latents for batch_size
         | 
| 639 | 
            +
                        additional_image_per_prompt = batch_size // image_latents.shape[0]
         | 
| 640 | 
            +
                        image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0)
         | 
| 641 | 
            +
                    elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0:
         | 
| 642 | 
            +
                        raise ValueError(
         | 
| 643 | 
            +
                            f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts."
         | 
| 644 | 
            +
                        )
         | 
| 645 | 
            +
                    else:
         | 
| 646 | 
            +
                        image_latents = torch.cat([image_latents], dim=0)
         | 
| 647 | 
            +
             | 
| 648 | 
            +
                    image_latent_height, image_latent_width = image_latents.shape[2:]
         | 
| 649 | 
            +
                    image_latents = self._pack_latents(
         | 
| 650 | 
            +
                        image_latents, batch_size, num_channels_latents, image_latent_height, image_latent_width
         | 
| 651 | 
            +
                    )
         | 
| 652 | 
            +
             | 
| 653 | 
            +
                    latent_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype)
         | 
| 654 | 
            +
                    image_ids = self._prepare_latent_image_ids(
         | 
| 655 | 
            +
                        batch_size, image_latent_height // 2, image_latent_width // 2, device, dtype
         | 
| 656 | 
            +
                    )
         | 
| 657 | 
            +
                    # image ids are the same as latent ids with the first dimension set to 1 instead of 0
         | 
| 658 | 
            +
                    image_ids[..., 0] = 1
         | 
| 659 | 
            +
             | 
| 660 | 
            +
                    if latents is None:
         | 
| 661 | 
            +
                        latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
         | 
| 662 | 
            +
                        latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width)
         | 
| 663 | 
            +
                    else:
         | 
| 664 | 
            +
                        latents = latents.to(device=device, dtype=dtype)
         | 
| 665 | 
            +
             | 
| 666 | 
            +
                    return latents, image_latents, latent_ids, image_ids
         | 
| 667 | 
            +
             | 
| 668 | 
            +
                @property
         | 
| 669 | 
            +
                def guidance_scale(self):
         | 
| 670 | 
            +
                    return self._guidance_scale
         | 
| 671 | 
            +
             | 
| 672 | 
            +
                @property
         | 
| 673 | 
            +
                def joint_attention_kwargs(self):
         | 
| 674 | 
            +
                    return self._joint_attention_kwargs
         | 
| 675 | 
            +
             | 
| 676 | 
            +
                @property
         | 
| 677 | 
            +
                def num_timesteps(self):
         | 
| 678 | 
            +
                    return self._num_timesteps
         | 
| 679 | 
            +
             | 
| 680 | 
            +
                @property
         | 
| 681 | 
            +
                def current_timestep(self):
         | 
| 682 | 
            +
                    return self._current_timestep
         | 
| 683 | 
            +
             | 
| 684 | 
            +
                @property
         | 
| 685 | 
            +
                def interrupt(self):
         | 
| 686 | 
            +
                    return self._interrupt
         | 
| 687 | 
            +
             | 
| 688 | 
            +
                @torch.no_grad()
         | 
| 689 | 
            +
                @replace_example_docstring(EXAMPLE_DOC_STRING)
         | 
| 690 | 
            +
                def __call__(
         | 
| 691 | 
            +
                    self,
         | 
| 692 | 
            +
                    image: Optional[PipelineImageInput] = None,
         | 
| 693 | 
            +
                    prompt: Union[str, List[str]] = None,
         | 
| 694 | 
            +
                    prompt_2: Optional[Union[str, List[str]]] = None,
         | 
| 695 | 
            +
                    negative_prompt: Union[str, List[str]] = None,
         | 
| 696 | 
            +
                    negative_prompt_2: Optional[Union[str, List[str]]] = None,
         | 
| 697 | 
            +
                    true_cfg_scale: float = 1.0,
         | 
| 698 | 
            +
                    height: Optional[int] = None,
         | 
| 699 | 
            +
                    width: Optional[int] = None,
         | 
| 700 | 
            +
                    num_inference_steps: int = 28,
         | 
| 701 | 
            +
                    sigmas: Optional[List[float]] = None,
         | 
| 702 | 
            +
                    guidance_scale: float = 3.5,
         | 
| 703 | 
            +
                    num_images_per_prompt: Optional[int] = 1,
         | 
| 704 | 
            +
                    generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
         | 
| 705 | 
            +
                    latents: Optional[torch.FloatTensor] = None,
         | 
| 706 | 
            +
                    prompt_embeds: Optional[torch.FloatTensor] = None,
         | 
| 707 | 
            +
                    pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
         | 
| 708 | 
            +
                    ip_adapter_image: Optional[PipelineImageInput] = None,
         | 
| 709 | 
            +
                    ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
         | 
| 710 | 
            +
                    negative_ip_adapter_image: Optional[PipelineImageInput] = None,
         | 
| 711 | 
            +
                    negative_ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
         | 
| 712 | 
            +
                    negative_prompt_embeds: Optional[torch.FloatTensor] = None,
         | 
| 713 | 
            +
                    negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
         | 
| 714 | 
            +
                    output_type: Optional[str] = "pil",
         | 
| 715 | 
            +
                    return_dict: bool = True,
         | 
| 716 | 
            +
                    joint_attention_kwargs: Optional[Dict[str, Any]] = None,
         | 
| 717 | 
            +
                    callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
         | 
| 718 | 
            +
                    callback_on_step_end_tensor_inputs: List[str] = ["latents"],
         | 
| 719 | 
            +
                    max_sequence_length: int = 512,
         | 
| 720 | 
            +
                    max_area: int = 1024**2,
         | 
| 721 | 
            +
                ):
         | 
| 722 | 
            +
                    r"""
         | 
| 723 | 
            +
                    Function invoked when calling the pipeline for generation.
         | 
| 724 | 
            +
             | 
| 725 | 
            +
                    Args:
         | 
| 726 | 
            +
                        image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
         | 
| 727 | 
            +
                            `Image`, numpy array or tensor representing an image batch to be used as the starting point. For both
         | 
| 728 | 
            +
                            numpy array and pytorch tensor, the expected value range is between `[0, 1]` If it's a tensor or a list
         | 
| 729 | 
            +
                            or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a
         | 
| 730 | 
            +
                            list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)` It can also accept image
         | 
| 731 | 
            +
                            latents as `image`, but if passing latents directly it is not encoded again.
         | 
| 732 | 
            +
                        prompt (`str` or `List[str]`, *optional*):
         | 
| 733 | 
            +
                            The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
         | 
| 734 | 
            +
                            instead.
         | 
| 735 | 
            +
                        prompt_2 (`str` or `List[str]`, *optional*):
         | 
| 736 | 
            +
                            The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
         | 
| 737 | 
            +
                            will be used instead.
         | 
| 738 | 
            +
                        negative_prompt (`str` or `List[str]`, *optional*):
         | 
| 739 | 
            +
                            The prompt or prompts not to guide the image generation. If not defined, one has to pass
         | 
| 740 | 
            +
                            `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `true_cfg_scale` is
         | 
| 741 | 
            +
                            not greater than `1`).
         | 
| 742 | 
            +
                        negative_prompt_2 (`str` or `List[str]`, *optional*):
         | 
| 743 | 
            +
                            The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
         | 
| 744 | 
            +
                            `text_encoder_2`. If not defined, `negative_prompt` is used in all the text-encoders.
         | 
| 745 | 
            +
                        true_cfg_scale (`float`, *optional*, defaults to 1.0):
         | 
| 746 | 
            +
                            When > 1.0 and a provided `negative_prompt`, enables true classifier-free guidance.
         | 
| 747 | 
            +
                        height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
         | 
| 748 | 
            +
                            The height in pixels of the generated image. This is set to 1024 by default for the best results.
         | 
| 749 | 
            +
                        width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
         | 
| 750 | 
            +
                            The width in pixels of the generated image. This is set to 1024 by default for the best results.
         | 
| 751 | 
            +
                        num_inference_steps (`int`, *optional*, defaults to 50):
         | 
| 752 | 
            +
                            The number of denoising steps. More denoising steps usually lead to a higher quality image at the
         | 
| 753 | 
            +
                            expense of slower inference.
         | 
| 754 | 
            +
                        sigmas (`List[float]`, *optional*):
         | 
| 755 | 
            +
                            Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
         | 
| 756 | 
            +
                            their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
         | 
| 757 | 
            +
                            will be used.
         | 
| 758 | 
            +
                        guidance_scale (`float`, *optional*, defaults to 3.5):
         | 
| 759 | 
            +
                            Guidance scale as defined in [Classifier-Free Diffusion
         | 
| 760 | 
            +
                            Guidance](https://huggingface.co/papers/2207.12598). `guidance_scale` is defined as `w` of equation 2.
         | 
| 761 | 
            +
                            of [Imagen Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting
         | 
| 762 | 
            +
                            `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to
         | 
| 763 | 
            +
                            the text `prompt`, usually at the expense of lower image quality.
         | 
| 764 | 
            +
                        num_images_per_prompt (`int`, *optional*, defaults to 1):
         | 
| 765 | 
            +
                            The number of images to generate per prompt.
         | 
| 766 | 
            +
                        generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
         | 
| 767 | 
            +
                            One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
         | 
| 768 | 
            +
                            to make generation deterministic.
         | 
| 769 | 
            +
                        latents (`torch.FloatTensor`, *optional*):
         | 
| 770 | 
            +
                            Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
         | 
| 771 | 
            +
                            generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
         | 
| 772 | 
            +
                            tensor will ge generated by sampling using the supplied random `generator`.
         | 
| 773 | 
            +
                        prompt_embeds (`torch.FloatTensor`, *optional*):
         | 
| 774 | 
            +
                            Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
         | 
| 775 | 
            +
                            provided, text embeddings will be generated from `prompt` input argument.
         | 
| 776 | 
            +
                        pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
         | 
| 777 | 
            +
                            Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
         | 
| 778 | 
            +
                            If not provided, pooled text embeddings will be generated from `prompt` input argument.
         | 
| 779 | 
            +
                        ip_adapter_image: (`PipelineImageInput`, *optional*):
         | 
| 780 | 
            +
                            Optional image input to work with IP Adapters.
         | 
| 781 | 
            +
                        ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
         | 
| 782 | 
            +
                            Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
         | 
| 783 | 
            +
                            IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. If not
         | 
| 784 | 
            +
                            provided, embeddings are computed from the `ip_adapter_image` input argument.
         | 
| 785 | 
            +
                        negative_ip_adapter_image:
         | 
| 786 | 
            +
                            (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
         | 
| 787 | 
            +
                        negative_ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
         | 
| 788 | 
            +
                            Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
         | 
| 789 | 
            +
                            IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. If not
         | 
| 790 | 
            +
                            provided, embeddings are computed from the `ip_adapter_image` input argument.
         | 
| 791 | 
            +
                        negative_prompt_embeds (`torch.FloatTensor`, *optional*):
         | 
| 792 | 
            +
                            Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
         | 
| 793 | 
            +
                            weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
         | 
| 794 | 
            +
                            argument.
         | 
| 795 | 
            +
                        negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
         | 
| 796 | 
            +
                            Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
         | 
| 797 | 
            +
                            weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
         | 
| 798 | 
            +
                            input argument.
         | 
| 799 | 
            +
                        output_type (`str`, *optional*, defaults to `"pil"`):
         | 
| 800 | 
            +
                            The output format of the generate image. Choose between
         | 
| 801 | 
            +
                            [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
         | 
| 802 | 
            +
                        return_dict (`bool`, *optional*, defaults to `True`):
         | 
| 803 | 
            +
                            Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple.
         | 
| 804 | 
            +
                        joint_attention_kwargs (`dict`, *optional*):
         | 
| 805 | 
            +
                            A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
         | 
| 806 | 
            +
                            `self.processor` in
         | 
| 807 | 
            +
                            [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
         | 
| 808 | 
            +
                        callback_on_step_end (`Callable`, *optional*):
         | 
| 809 | 
            +
                            A function that calls at the end of each denoising steps during the inference. The function is called
         | 
| 810 | 
            +
                            with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
         | 
| 811 | 
            +
                            callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
         | 
| 812 | 
            +
                            `callback_on_step_end_tensor_inputs`.
         | 
| 813 | 
            +
                        callback_on_step_end_tensor_inputs (`List`, *optional*):
         | 
| 814 | 
            +
                            The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
         | 
| 815 | 
            +
                            will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
         | 
| 816 | 
            +
                            `._callback_tensor_inputs` attribute of your pipeline class.
         | 
| 817 | 
            +
                        max_sequence_length (`int` defaults to 512):
         | 
| 818 | 
            +
                            Maximum sequence length to use with the `prompt`.
         | 
| 819 | 
            +
                        max_area (`int`, defaults to `1024 ** 2`):
         | 
| 820 | 
            +
                            The maximum area of the generated image in pixels. The height and width will be adjusted to fit this
         | 
| 821 | 
            +
                            area while maintaining the aspect ratio.
         | 
| 822 | 
            +
             | 
| 823 | 
            +
                    Examples:
         | 
| 824 | 
            +
             | 
| 825 | 
            +
                    Returns:
         | 
| 826 | 
            +
                        [`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict`
         | 
| 827 | 
            +
                        is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated
         | 
| 828 | 
            +
                        images.
         | 
| 829 | 
            +
                    """
         | 
| 830 | 
            +
             | 
| 831 | 
            +
                    height = height or self.default_sample_size * self.vae_scale_factor
         | 
| 832 | 
            +
                    width = width or self.default_sample_size * self.vae_scale_factor
         | 
| 833 | 
            +
             | 
| 834 | 
            +
                    original_height, original_width = height, width
         | 
| 835 | 
            +
                    aspect_ratio = width / height
         | 
| 836 | 
            +
                    width = round((max_area * aspect_ratio) ** 0.5)
         | 
| 837 | 
            +
                    height = round((max_area / aspect_ratio) ** 0.5)
         | 
| 838 | 
            +
             | 
| 839 | 
            +
                    multiple_of = self.vae_scale_factor * 2
         | 
| 840 | 
            +
                    width = width // multiple_of * multiple_of
         | 
| 841 | 
            +
                    height = height // multiple_of * multiple_of
         | 
| 842 | 
            +
             | 
| 843 | 
            +
                    if height != original_height or width != original_width:
         | 
| 844 | 
            +
                        logger.warning(
         | 
| 845 | 
            +
                            f"Generation `height` and `width` have been adjusted to {height} and {width} to fit the model requirements."
         | 
| 846 | 
            +
                        )
         | 
| 847 | 
            +
             | 
| 848 | 
            +
                    # 1. Check inputs. Raise error if not correct
         | 
| 849 | 
            +
                    self.check_inputs(
         | 
| 850 | 
            +
                        prompt,
         | 
| 851 | 
            +
                        prompt_2,
         | 
| 852 | 
            +
                        height,
         | 
| 853 | 
            +
                        width,
         | 
| 854 | 
            +
                        negative_prompt=negative_prompt,
         | 
| 855 | 
            +
                        negative_prompt_2=negative_prompt_2,
         | 
| 856 | 
            +
                        prompt_embeds=prompt_embeds,
         | 
| 857 | 
            +
                        negative_prompt_embeds=negative_prompt_embeds,
         | 
| 858 | 
            +
                        pooled_prompt_embeds=pooled_prompt_embeds,
         | 
| 859 | 
            +
                        negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
         | 
| 860 | 
            +
                        callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
         | 
| 861 | 
            +
                        max_sequence_length=max_sequence_length,
         | 
| 862 | 
            +
                    )
         | 
| 863 | 
            +
             | 
| 864 | 
            +
                    self._guidance_scale = guidance_scale
         | 
| 865 | 
            +
                    self._joint_attention_kwargs = joint_attention_kwargs
         | 
| 866 | 
            +
                    self._current_timestep = None
         | 
| 867 | 
            +
                    self._interrupt = False
         | 
| 868 | 
            +
             | 
| 869 | 
            +
                    # 2. Define call parameters
         | 
| 870 | 
            +
                    if prompt is not None and isinstance(prompt, str):
         | 
| 871 | 
            +
                        batch_size = 1
         | 
| 872 | 
            +
                    elif prompt is not None and isinstance(prompt, list):
         | 
| 873 | 
            +
                        batch_size = len(prompt)
         | 
| 874 | 
            +
                    else:
         | 
| 875 | 
            +
                        batch_size = prompt_embeds.shape[0]
         | 
| 876 | 
            +
             | 
| 877 | 
            +
                    device = self._execution_device
         | 
| 878 | 
            +
             | 
| 879 | 
            +
                    lora_scale = (
         | 
| 880 | 
            +
                        self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
         | 
| 881 | 
            +
                    )
         | 
| 882 | 
            +
                    has_neg_prompt = negative_prompt is not None or (
         | 
| 883 | 
            +
                        negative_prompt_embeds is not None and negative_pooled_prompt_embeds is not None
         | 
| 884 | 
            +
                    )
         | 
| 885 | 
            +
                    do_true_cfg = true_cfg_scale > 1 and has_neg_prompt
         | 
| 886 | 
            +
                    (
         | 
| 887 | 
            +
                        prompt_embeds,
         | 
| 888 | 
            +
                        pooled_prompt_embeds,
         | 
| 889 | 
            +
                        text_ids,
         | 
| 890 | 
            +
                    ) = self.encode_prompt(
         | 
| 891 | 
            +
                        prompt=prompt,
         | 
| 892 | 
            +
                        prompt_2=prompt_2,
         | 
| 893 | 
            +
                        prompt_embeds=prompt_embeds,
         | 
| 894 | 
            +
                        pooled_prompt_embeds=pooled_prompt_embeds,
         | 
| 895 | 
            +
                        device=device,
         | 
| 896 | 
            +
                        num_images_per_prompt=num_images_per_prompt,
         | 
| 897 | 
            +
                        max_sequence_length=max_sequence_length,
         | 
| 898 | 
            +
                        lora_scale=lora_scale,
         | 
| 899 | 
            +
                    )
         | 
| 900 | 
            +
                    if do_true_cfg:
         | 
| 901 | 
            +
                        (
         | 
| 902 | 
            +
                            negative_prompt_embeds,
         | 
| 903 | 
            +
                            negative_pooled_prompt_embeds,
         | 
| 904 | 
            +
                            negative_text_ids,
         | 
| 905 | 
            +
                        ) = self.encode_prompt(
         | 
| 906 | 
            +
                            prompt=negative_prompt,
         | 
| 907 | 
            +
                            prompt_2=negative_prompt_2,
         | 
| 908 | 
            +
                            prompt_embeds=negative_prompt_embeds,
         | 
| 909 | 
            +
                            pooled_prompt_embeds=negative_pooled_prompt_embeds,
         | 
| 910 | 
            +
                            device=device,
         | 
| 911 | 
            +
                            num_images_per_prompt=num_images_per_prompt,
         | 
| 912 | 
            +
                            max_sequence_length=max_sequence_length,
         | 
| 913 | 
            +
                            lora_scale=lora_scale,
         | 
| 914 | 
            +
                        )
         | 
| 915 | 
            +
             | 
| 916 | 
            +
                    # 3. Preprocess image
         | 
| 917 | 
            +
                    if not torch.is_tensor(image) or image.size(1) == self.latent_channels:
         | 
| 918 | 
            +
                        image_width, image_height = self.image_processor.get_default_height_width(image)
         | 
| 919 | 
            +
                        aspect_ratio = image_width / image_height
         | 
| 920 | 
            +
             | 
| 921 | 
            +
                        # Kontext is trained on specific resolutions, using one of them is recommended
         | 
| 922 | 
            +
                        _, image_width, image_height = min(
         | 
| 923 | 
            +
                            (abs(aspect_ratio - w / h), w, h) for w, h in PREFERRED_KONTEXT_RESOLUTIONS
         | 
| 924 | 
            +
                        )
         | 
| 925 | 
            +
                        image_width = image_width // multiple_of * multiple_of
         | 
| 926 | 
            +
                        image_height = image_height // multiple_of * multiple_of
         | 
| 927 | 
            +
                        image = self.image_processor.resize(image, image_height, image_width)
         | 
| 928 | 
            +
                        image = self.image_processor.preprocess(image, image_height, image_width)
         | 
| 929 | 
            +
             | 
| 930 | 
            +
                    # 4. Prepare latent variables
         | 
| 931 | 
            +
                    num_channels_latents = self.transformer.config.in_channels // 4
         | 
| 932 | 
            +
                    latents, image_latents, latent_ids, image_ids = self.prepare_latents(
         | 
| 933 | 
            +
                        image,
         | 
| 934 | 
            +
                        batch_size * num_images_per_prompt,
         | 
| 935 | 
            +
                        num_channels_latents,
         | 
| 936 | 
            +
                        height,
         | 
| 937 | 
            +
                        width,
         | 
| 938 | 
            +
                        prompt_embeds.dtype,
         | 
| 939 | 
            +
                        device,
         | 
| 940 | 
            +
                        generator,
         | 
| 941 | 
            +
                        latents,
         | 
| 942 | 
            +
                    )
         | 
| 943 | 
            +
                    latent_ids = torch.cat([latent_ids, image_ids], dim=0)  # dim 0 is sequence dimension
         | 
| 944 | 
            +
             | 
| 945 | 
            +
                    # 5. Prepare timesteps
         | 
| 946 | 
            +
                    sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas
         | 
| 947 | 
            +
                    image_seq_len = latents.shape[1]
         | 
| 948 | 
            +
                    mu = calculate_shift(
         | 
| 949 | 
            +
                        image_seq_len,
         | 
| 950 | 
            +
                        self.scheduler.config.get("base_image_seq_len", 256),
         | 
| 951 | 
            +
                        self.scheduler.config.get("max_image_seq_len", 4096),
         | 
| 952 | 
            +
                        self.scheduler.config.get("base_shift", 0.5),
         | 
| 953 | 
            +
                        self.scheduler.config.get("max_shift", 1.15),
         | 
| 954 | 
            +
                    )
         | 
| 955 | 
            +
                    timesteps, num_inference_steps = retrieve_timesteps(
         | 
| 956 | 
            +
                        self.scheduler,
         | 
| 957 | 
            +
                        num_inference_steps,
         | 
| 958 | 
            +
                        device,
         | 
| 959 | 
            +
                        sigmas=sigmas,
         | 
| 960 | 
            +
                        mu=mu,
         | 
| 961 | 
            +
                    )
         | 
| 962 | 
            +
                    num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
         | 
| 963 | 
            +
                    self._num_timesteps = len(timesteps)
         | 
| 964 | 
            +
             | 
| 965 | 
            +
                    # handle guidance
         | 
| 966 | 
            +
                    if self.transformer.config.guidance_embeds:
         | 
| 967 | 
            +
                        guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
         | 
| 968 | 
            +
                        guidance = guidance.expand(latents.shape[0])
         | 
| 969 | 
            +
                    else:
         | 
| 970 | 
            +
                        guidance = None
         | 
| 971 | 
            +
             | 
| 972 | 
            +
                    if (ip_adapter_image is not None or ip_adapter_image_embeds is not None) and (
         | 
| 973 | 
            +
                        negative_ip_adapter_image is None and negative_ip_adapter_image_embeds is None
         | 
| 974 | 
            +
                    ):
         | 
| 975 | 
            +
                        negative_ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8)
         | 
| 976 | 
            +
                        negative_ip_adapter_image = [negative_ip_adapter_image] * self.transformer.encoder_hid_proj.num_ip_adapters
         | 
| 977 | 
            +
             | 
| 978 | 
            +
                    elif (ip_adapter_image is None and ip_adapter_image_embeds is None) and (
         | 
| 979 | 
            +
                        negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None
         | 
| 980 | 
            +
                    ):
         | 
| 981 | 
            +
                        ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8)
         | 
| 982 | 
            +
                        ip_adapter_image = [ip_adapter_image] * self.transformer.encoder_hid_proj.num_ip_adapters
         | 
| 983 | 
            +
             | 
| 984 | 
            +
                    if self.joint_attention_kwargs is None:
         | 
| 985 | 
            +
                        self._joint_attention_kwargs = {}
         | 
| 986 | 
            +
             | 
| 987 | 
            +
                    image_embeds = None
         | 
| 988 | 
            +
                    negative_image_embeds = None
         | 
| 989 | 
            +
                    if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
         | 
| 990 | 
            +
                        image_embeds = self.prepare_ip_adapter_image_embeds(
         | 
| 991 | 
            +
                            ip_adapter_image,
         | 
| 992 | 
            +
                            ip_adapter_image_embeds,
         | 
| 993 | 
            +
                            device,
         | 
| 994 | 
            +
                            batch_size * num_images_per_prompt,
         | 
| 995 | 
            +
                        )
         | 
| 996 | 
            +
                    if negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None:
         | 
| 997 | 
            +
                        negative_image_embeds = self.prepare_ip_adapter_image_embeds(
         | 
| 998 | 
            +
                            negative_ip_adapter_image,
         | 
| 999 | 
            +
                            negative_ip_adapter_image_embeds,
         | 
| 1000 | 
            +
                            device,
         | 
| 1001 | 
            +
                            batch_size * num_images_per_prompt,
         | 
| 1002 | 
            +
                        )
         | 
| 1003 | 
            +
             | 
| 1004 | 
            +
                    # 6. Denoising loop
         | 
| 1005 | 
            +
                    with self.progress_bar(total=num_inference_steps) as progress_bar:
         | 
| 1006 | 
            +
                        for i, t in enumerate(timesteps):
         | 
| 1007 | 
            +
                            if self.interrupt:
         | 
| 1008 | 
            +
                                continue
         | 
| 1009 | 
            +
             | 
| 1010 | 
            +
                            self._current_timestep = t
         | 
| 1011 | 
            +
                            if image_embeds is not None:
         | 
| 1012 | 
            +
                                self._joint_attention_kwargs["ip_adapter_image_embeds"] = image_embeds
         | 
| 1013 | 
            +
             | 
| 1014 | 
            +
                            latent_model_input = torch.cat([latents, image_latents], dim=1)
         | 
| 1015 | 
            +
                            timestep = t.expand(latents.shape[0]).to(latents.dtype)
         | 
| 1016 | 
            +
             | 
| 1017 | 
            +
                            noise_pred = self.transformer(
         | 
| 1018 | 
            +
                                hidden_states=latent_model_input,
         | 
| 1019 | 
            +
                                timestep=timestep / 1000,
         | 
| 1020 | 
            +
                                guidance=guidance,
         | 
| 1021 | 
            +
                                pooled_projections=pooled_prompt_embeds,
         | 
| 1022 | 
            +
                                encoder_hidden_states=prompt_embeds,
         | 
| 1023 | 
            +
                                txt_ids=text_ids,
         | 
| 1024 | 
            +
                                img_ids=latent_ids,
         | 
| 1025 | 
            +
                                joint_attention_kwargs=self.joint_attention_kwargs,
         | 
| 1026 | 
            +
                                return_dict=False,
         | 
| 1027 | 
            +
                            )[0]
         | 
| 1028 | 
            +
                            noise_pred = noise_pred[:, : latents.size(1)]
         | 
| 1029 | 
            +
             | 
| 1030 | 
            +
                            if do_true_cfg:
         | 
| 1031 | 
            +
                                if negative_image_embeds is not None:
         | 
| 1032 | 
            +
                                    self._joint_attention_kwargs["ip_adapter_image_embeds"] = negative_image_embeds
         | 
| 1033 | 
            +
                                neg_noise_pred = self.transformer(
         | 
| 1034 | 
            +
                                    hidden_states=latent_model_input,
         | 
| 1035 | 
            +
                                    timestep=timestep / 1000,
         | 
| 1036 | 
            +
                                    guidance=guidance,
         | 
| 1037 | 
            +
                                    pooled_projections=negative_pooled_prompt_embeds,
         | 
| 1038 | 
            +
                                    encoder_hidden_states=negative_prompt_embeds,
         | 
| 1039 | 
            +
                                    txt_ids=negative_text_ids,
         | 
| 1040 | 
            +
                                    img_ids=latent_ids,
         | 
| 1041 | 
            +
                                    joint_attention_kwargs=self.joint_attention_kwargs,
         | 
| 1042 | 
            +
                                    return_dict=False,
         | 
| 1043 | 
            +
                                )[0]
         | 
| 1044 | 
            +
                                neg_noise_pred = neg_noise_pred[:, : latents.size(1)]
         | 
| 1045 | 
            +
                                noise_pred = neg_noise_pred + true_cfg_scale * (noise_pred - neg_noise_pred)
         | 
| 1046 | 
            +
             | 
| 1047 | 
            +
                            # compute the previous noisy sample x_t -> x_t-1
         | 
| 1048 | 
            +
                            latents_dtype = latents.dtype
         | 
| 1049 | 
            +
                            latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
         | 
| 1050 | 
            +
             | 
| 1051 | 
            +
                            if latents.dtype != latents_dtype:
         | 
| 1052 | 
            +
                                if torch.backends.mps.is_available():
         | 
| 1053 | 
            +
                                    # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
         | 
| 1054 | 
            +
                                    latents = latents.to(latents_dtype)
         | 
| 1055 | 
            +
             | 
| 1056 | 
            +
                            if callback_on_step_end is not None:
         | 
| 1057 | 
            +
                                callback_kwargs = {}
         | 
| 1058 | 
            +
                                for k in callback_on_step_end_tensor_inputs:
         | 
| 1059 | 
            +
                                    callback_kwargs[k] = locals()[k]
         | 
| 1060 | 
            +
                                callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
         | 
| 1061 | 
            +
             | 
| 1062 | 
            +
                                latents = callback_outputs.pop("latents", latents)
         | 
| 1063 | 
            +
                                prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
         | 
| 1064 | 
            +
             | 
| 1065 | 
            +
                            # call the callback, if provided
         | 
| 1066 | 
            +
                            if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
         | 
| 1067 | 
            +
                                progress_bar.update()
         | 
| 1068 | 
            +
             | 
| 1069 | 
            +
                            if XLA_AVAILABLE:
         | 
| 1070 | 
            +
                                xm.mark_step()
         | 
| 1071 | 
            +
             | 
| 1072 | 
            +
                    self._current_timestep = None
         | 
| 1073 | 
            +
             | 
| 1074 | 
            +
                    if output_type == "latent":
         | 
| 1075 | 
            +
                        image = latents
         | 
| 1076 | 
            +
                    else:
         | 
| 1077 | 
            +
                        latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
         | 
| 1078 | 
            +
                        latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
         | 
| 1079 | 
            +
                        image = self.vae.decode(latents, return_dict=False)[0]
         | 
| 1080 | 
            +
                        image = self.image_processor.postprocess(image, output_type=output_type)
         | 
| 1081 | 
            +
             | 
| 1082 | 
            +
                    # Offload all models
         | 
| 1083 | 
            +
                    self.maybe_free_model_hooks()
         | 
| 1084 | 
            +
             | 
| 1085 | 
            +
                    if not return_dict:
         | 
| 1086 | 
            +
                        return (image,)
         | 
| 1087 | 
            +
             | 
| 1088 | 
            +
                    return FluxPipelineOutput(images=image)
         | 
 
			
