Spaces:
Runtime error
Runtime error
| from PIL import Image, ImageEnhance, ImageOps | |
| import string | |
| from collections import Counter | |
| from itertools import tee, count | |
| import pytesseract | |
| from pytesseract import Output | |
| import json | |
| import pandas as pd | |
| # import matplotlib.pyplot as plt | |
| import cv2 | |
| import numpy as np | |
| from transformers import DetrFeatureExtractor | |
| from transformers import TableTransformerForObjectDetection | |
| import torch | |
| import gradio as gr | |
| import pdf2image | |
| def plot_results_detection( | |
| model, image, prob, bboxes_scaled, delta_xmin, delta_ymin, delta_xmax, delta_ymax | |
| ): | |
| plt.imshow(image) | |
| ax = plt.gca() | |
| for p, (xmin, ymin, xmax, ymax) in zip(prob, bboxes_scaled.tolist()): | |
| cl = p.argmax() | |
| xmin, ymin, xmax, ymax = ( | |
| xmin - delta_xmin, | |
| ymin - delta_ymin, | |
| xmax + delta_xmax, | |
| ymax + delta_ymax, | |
| ) | |
| ax.add_patch( | |
| plt.Rectangle( | |
| (xmin, ymin), | |
| xmax - xmin, | |
| ymax - ymin, | |
| fill=False, | |
| color="red", | |
| linewidth=3, | |
| ) | |
| ) | |
| text = f"{model.config.id2label[cl.item()]}: {p[cl]:0.2f}" | |
| ax.text( | |
| xmin - 20, | |
| ymin - 50, | |
| text, | |
| fontsize=10, | |
| bbox=dict(facecolor="yellow", alpha=0.5), | |
| ) | |
| plt.axis("off") | |
| def crop_tables(pil_img, prob, boxes, delta_xmin, delta_ymin, delta_xmax, delta_ymax): | |
| """ | |
| crop_tables and plot_results_detection must have same co-ord shifts because 1 only plots the other one updates co-ordinates | |
| """ | |
| cropped_img_list = [] | |
| for p, (xmin, ymin, xmax, ymax) in zip(prob, boxes.tolist()): | |
| xmin, ymin, xmax, ymax = ( | |
| xmin - delta_xmin, | |
| ymin - delta_ymin, | |
| xmax + delta_xmax, | |
| ymax + delta_ymax, | |
| ) | |
| cropped_img = pil_img.crop((xmin, ymin, xmax, ymax)) | |
| cropped_img_list.append(cropped_img) | |
| return cropped_img_list | |
| def add_padding(pil_img, top, right, bottom, left, color=(255, 255, 255)): | |
| """ | |
| Image padding as part of TSR pre-processing to prevent missing table edges | |
| """ | |
| width, height = pil_img.size | |
| new_width = width + right + left | |
| new_height = height + top + bottom | |
| result = Image.new(pil_img.mode, (new_width, new_height), color) | |
| result.paste(pil_img, (left, top)) | |
| return result | |
| def table_detector(image, THRESHOLD_PROBA): | |
| """ | |
| Table detection using DEtect-object TRansformer pre-trained on 1 million tables | |
| """ | |
| feature_extractor = DetrFeatureExtractor(do_resize=True, size=800, max_size=800) | |
| encoding = feature_extractor(image, return_tensors="pt") | |
| model = TableTransformerForObjectDetection.from_pretrained( | |
| "microsoft/table-transformer-detection" | |
| ) | |
| with torch.no_grad(): | |
| outputs = model(**encoding) | |
| probas = outputs.logits.softmax(-1)[0, :, :-1] | |
| keep = probas.max(-1).values > THRESHOLD_PROBA | |
| target_sizes = torch.tensor(image.size[::-1]).unsqueeze(0) | |
| postprocessed_outputs = feature_extractor.post_process(outputs, target_sizes) | |
| bboxes_scaled = postprocessed_outputs[0]["boxes"][keep] | |
| return (model, probas[keep], bboxes_scaled) | |
| def table_struct_recog(image, THRESHOLD_PROBA): | |
| """ | |
| Table structure recognition using DEtect-object TRansformer pre-trained on 1 million tables | |
| """ | |
| feature_extractor = DetrFeatureExtractor(do_resize=True, size=1000, max_size=1000) | |
| encoding = feature_extractor(image, return_tensors="pt") | |
| model = TableTransformerForObjectDetection.from_pretrained( | |
| "microsoft/table-transformer-structure-recognition" | |
| ) | |
| with torch.no_grad(): | |
| outputs = model(**encoding) | |
| probas = outputs.logits.softmax(-1)[0, :, :-1] | |
| keep = probas.max(-1).values > THRESHOLD_PROBA | |
| target_sizes = torch.tensor(image.size[::-1]).unsqueeze(0) | |
| postprocessed_outputs = feature_extractor.post_process(outputs, target_sizes) | |
| bboxes_scaled = postprocessed_outputs[0]["boxes"][keep] | |
| return (model, probas[keep], bboxes_scaled) | |
| def generate_structure( | |
| model, pil_img, prob, boxes, expand_rowcol_bbox_top, expand_rowcol_bbox_bottom | |
| ): | |
| colors = ["red", "blue", "green", "yellow", "orange", "violet"] | |
| """ | |
| Co-ordinates are adjusted here by 3 'pixels' | |
| To plot table pillow image and the TSR bounding boxes on the table | |
| """ | |
| # plt.figure(figsize=(32,20)) | |
| # plt.imshow(pil_img) | |
| # ax = plt.gca() | |
| rows = {} | |
| cols = {} | |
| idx = 0 | |
| for p, (xmin, ymin, xmax, ymax) in zip(prob, boxes.tolist()): | |
| xmin, ymin, xmax, ymax = xmin, ymin, xmax, ymax | |
| cl = p.argmax() | |
| class_text = model.config.id2label[cl.item()] | |
| text = f"{class_text}: {p[cl]:0.2f}" | |
| # or (class_text == 'table column') | |
| # if (class_text == 'table row') or (class_text =='table projected row header') or (class_text == 'table column'): | |
| # ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin,fill=False, color=colors[0], linewidth=2)) | |
| # ax.text(xmin-10, ymin-10, text, fontsize=5, bbox=dict(facecolor='yellow', alpha=0.5)) | |
| if class_text == "table row": | |
| rows["table row." + str(idx)] = ( | |
| xmin, | |
| ymin - expand_rowcol_bbox_top, | |
| xmax, | |
| ymax + expand_rowcol_bbox_bottom, | |
| ) | |
| if class_text == "table column": | |
| cols["table column." + str(idx)] = ( | |
| xmin, | |
| ymin - expand_rowcol_bbox_top, | |
| xmax, | |
| ymax + expand_rowcol_bbox_bottom, | |
| ) | |
| idx += 1 | |
| # plt.axis('on') | |
| return rows, cols | |
| def sort_table_featuresv2(rows: dict, cols: dict): | |
| # Sometimes the header and first row overlap, and we need the header bbox not to have first row's bbox inside the headers bbox | |
| rows_ = { | |
| table_feature: (xmin, ymin, xmax, ymax) | |
| for table_feature, (xmin, ymin, xmax, ymax) in sorted( | |
| rows.items(), key=lambda tup: tup[1][1] | |
| ) | |
| } | |
| cols_ = { | |
| table_feature: (xmin, ymin, xmax, ymax) | |
| for table_feature, (xmin, ymin, xmax, ymax) in sorted( | |
| cols.items(), key=lambda tup: tup[1][0] | |
| ) | |
| } | |
| return rows_, cols_ | |
| def individual_table_featuresv2(pil_img, rows: dict, cols: dict): | |
| for k, v in rows.items(): | |
| xmin, ymin, xmax, ymax = v | |
| cropped_img = pil_img.crop((xmin, ymin, xmax, ymax)) | |
| rows[k] = xmin, ymin, xmax, ymax, cropped_img | |
| for k, v in cols.items(): | |
| xmin, ymin, xmax, ymax = v | |
| cropped_img = pil_img.crop((xmin, ymin, xmax, ymax)) | |
| cols[k] = xmin, ymin, xmax, ymax, cropped_img | |
| return rows, cols | |
| def object_to_cellsv2( | |
| master_row: dict, | |
| cols: dict, | |
| expand_rowcol_bbox_top, | |
| expand_rowcol_bbox_bottom, | |
| padd_left, | |
| ): | |
| """Removes redundant bbox for rows&columns and divides each row into cells from columns | |
| Args: | |
| Returns: | |
| """ | |
| cells_img = {} | |
| header_idx = 0 | |
| row_idx = 0 | |
| previous_xmax_col = 0 | |
| new_cols = {} | |
| new_master_row = {} | |
| previous_ymin_row = 0 | |
| new_cols = cols | |
| new_master_row = master_row | |
| ## Below 2 for loops remove redundant bounding boxes ### | |
| # for k_col, v_col in cols.items(): | |
| # xmin_col, _, xmax_col, _, col_img = v_col | |
| # if (np.isclose(previous_xmax_col, xmax_col, atol=5)) or (xmin_col >= xmax_col): | |
| # print('Found a column with double bbox') | |
| # continue | |
| # previous_xmax_col = xmax_col | |
| # new_cols[k_col] = v_col | |
| # for k_row, v_row in master_row.items(): | |
| # _, ymin_row, _, ymax_row, row_img = v_row | |
| # if (np.isclose(previous_ymin_row, ymin_row, atol=5)) or (ymin_row >= ymax_row): | |
| # print('Found a row with double bbox') | |
| # continue | |
| # previous_ymin_row = ymin_row | |
| # new_master_row[k_row] = v_row | |
| ###################################################### | |
| for k_row, v_row in new_master_row.items(): | |
| _, _, _, _, row_img = v_row | |
| xmax, ymax = row_img.size | |
| xa, ya, xb, yb = 0, 0, 0, ymax | |
| row_img_list = [] | |
| # plt.imshow(row_img) | |
| # st.pyplot() | |
| for idx, kv in enumerate(new_cols.items()): | |
| k_col, v_col = kv | |
| xmin_col, _, xmax_col, _, col_img = v_col | |
| xmin_col, xmax_col = xmin_col - padd_left - 10, xmax_col - padd_left | |
| # plt.imshow(col_img) | |
| # st.pyplot() | |
| # xa + 3 : to remove borders on the left side of the cropped cell | |
| # yb = 3: to remove row information from the above row of the cropped cell | |
| # xb - 3: to remove borders on the right side of the cropped cell | |
| xa = xmin_col | |
| xb = xmax_col | |
| if idx == 0: | |
| xa = 0 | |
| if idx == len(new_cols) - 1: | |
| xb = xmax | |
| xa, ya, xb, yb = xa, ya, xb, yb | |
| row_img_cropped = row_img.crop((xa, ya, xb, yb)) | |
| row_img_list.append(row_img_cropped) | |
| cells_img[k_row + "." + str(row_idx)] = row_img_list | |
| row_idx += 1 | |
| return cells_img, len(new_cols), len(new_master_row) - 1 | |
| def pytess(cell_pil_img): | |
| return " ".join( | |
| pytesseract.image_to_data( | |
| cell_pil_img, | |
| output_type=Output.DICT, | |
| config="-c tessedit_char_blacklist=œ˜â€œï¬â™Ã©œ¢!|”?«“¥ --psm 6 preserve_interword_spaces", | |
| )["text"] | |
| ).strip() | |
| def uniquify(seq, suffs=count(1)): | |
| """Make all the items unique by adding a suffix (1, 2, etc). | |
| Credit: https://stackoverflow.com/questions/30650474/python-rename-duplicates-in-list-with-progressive-numbers-without-sorting-list | |
| `seq` is mutable sequence of strings. | |
| `suffs` is an optional alternative suffix iterable. | |
| """ | |
| not_unique = [k for k, v in Counter(seq).items() if v > 1] | |
| suff_gens = dict(zip(not_unique, tee(suffs, len(not_unique)))) | |
| for idx, s in enumerate(seq): | |
| try: | |
| suffix = str(next(suff_gens[s])) | |
| except KeyError: | |
| continue | |
| else: | |
| seq[idx] += suffix | |
| return seq | |
| def clean_dataframe(df): | |
| """ | |
| Remove irrelevant symbols that appear with tesseractOCR | |
| """ | |
| # df.columns = [col.replace('|', '') for col in df.columns] | |
| for col in df.columns: | |
| df[col] = df[col].str.replace("'", "", regex=True) | |
| df[col] = df[col].str.replace('"', "", regex=True) | |
| df[col] = df[col].str.replace("]", "", regex=True) | |
| df[col] = df[col].str.replace("[", "", regex=True) | |
| df[col] = df[col].str.replace("{", "", regex=True) | |
| df[col] = df[col].str.replace("}", "", regex=True) | |
| df[col] = df[col].str.replace("|", "", regex=True) | |
| return df | |
| def create_dataframe(cells_pytess_result: list, max_cols: int, max_rows: int, csv_path): | |
| """Create dataframe using list of cell values of the table, also checks for valid header of dataframe | |
| Args: | |
| cells_pytess_result: list of strings, each element representing a cell in a table | |
| max_cols, max_rows: number of columns and rows | |
| Returns: | |
| dataframe : final dataframe after all pre-processing | |
| """ | |
| headers = cells_pytess_result[:max_cols] | |
| new_headers = uniquify(headers, (f" {x!s}" for x in string.ascii_lowercase)) | |
| counter = 0 | |
| cells_list = cells_pytess_result[max_cols:] | |
| df = pd.DataFrame("", index=range(0, max_rows), columns=new_headers) | |
| cell_idx = 0 | |
| for nrows in range(max_rows): | |
| for ncols in range(max_cols): | |
| df.iat[nrows, ncols] = str(cells_list[cell_idx]) | |
| cell_idx += 1 | |
| ## To check if there are duplicate headers if result of uniquify+col == col | |
| ## This check removes headers when all headers are empty or if median of header word count is less than 6 | |
| for x, col in zip(string.ascii_lowercase, new_headers): | |
| if f" {x!s}" == col: | |
| counter += 1 | |
| header_char_count = [len(col) for col in new_headers] | |
| # if (counter == len(new_headers)) or (statistics.median(header_char_count) < 6): | |
| # st.write('woooot') | |
| # df.columns = uniquify(df.iloc[0], (f' {x!s}' for x in string.ascii_lowercase)) | |
| # df = df.iloc[1:,:] | |
| df = clean_dataframe(df) | |
| # df.to_csv(csv_path) | |
| return df | |
| def postprocess_dataframes(result_tables): | |
| """ | |
| Normalize column names | |
| """ | |
| # df.columns = [col.replace('|', '') for col in df.columns] | |
| res = {} | |
| for idx, table_df in enumerate(result_tables): | |
| result_df = pd.DataFrame() | |
| print("--1") | |
| print(table_df) | |
| print("--2") | |
| print(table_df.to_json(orient="records")) | |
| for col in table_df.columns: | |
| if col.lower().startswith("item"): | |
| result_df["name"] = table_df[col].copy() | |
| if ( | |
| col.lower().startswith("total") | |
| or col.lower().startswith("amount") | |
| or col.lower().startswith("cost") | |
| ): | |
| result_df["amount"] = table_df[col].copy() | |
| if len(result_df.columns) == 0: | |
| result_df["name"] = table_df.iloc[:, 0].copy() | |
| result_df["amount"] = table_df.iloc[:, 1].copy() | |
| print("--3") | |
| print(result_df.columns) | |
| result_df["cost_code"] = "" | |
| # res["Table" + str(idx)] = result_df.to_json(orient="records") | |
| res=table_df.to_json(orient="records") | |
| return res | |
| def process_image(image): | |
| # if pdf: | |
| # path_to_pdf = pdf.name | |
| # # convert PDF to PIL images (one image by page) | |
| # first_page=True # we want here only the first page as image | |
| # if first_page: last_page = 1 | |
| # else: last_page = None | |
| # imgs = pdf2image.convert_from_path(path_to_pdf, last_page=last_page) | |
| # image = imgs[0] | |
| TD_THRESHOLD = 0.7 | |
| TSR_THRESHOLD = 0.8 | |
| padd_top = 100 | |
| padd_left = 100 | |
| padd_bottom = 100 | |
| padd_right = 20 | |
| delta_xmin = 0 | |
| delta_ymin = 0 | |
| delta_xmax = 0 | |
| delta_ymax = 0 | |
| expand_rowcol_bbox_top = 0 | |
| expand_rowcol_bbox_bottom = 0 | |
| image = image.convert("RGB") | |
| model, probas, bboxes_scaled = table_detector(image, THRESHOLD_PROBA=TD_THRESHOLD) | |
| # plot_results_detection(model, image, probas, bboxes_scaled, delta_xmin, delta_ymin, delta_xmax, delta_ymax) | |
| cropped_img_list = crop_tables( | |
| image, probas, bboxes_scaled, delta_xmin, delta_ymin, delta_xmax, delta_ymax | |
| ) | |
| result = [] | |
| for idx, unpadded_table in enumerate(cropped_img_list): | |
| table = add_padding( | |
| unpadded_table, padd_top, padd_right, padd_bottom, padd_left | |
| ) | |
| model, probas, bboxes_scaled = table_struct_recog( | |
| table, THRESHOLD_PROBA=TSR_THRESHOLD | |
| ) | |
| rows, cols = generate_structure( | |
| model, | |
| table, | |
| probas, | |
| bboxes_scaled, | |
| expand_rowcol_bbox_top, | |
| expand_rowcol_bbox_bottom, | |
| ) | |
| rows, cols = sort_table_featuresv2(rows, cols) | |
| master_row, cols = individual_table_featuresv2(table, rows, cols) | |
| cells_img, max_cols, max_rows = object_to_cellsv2( | |
| master_row, | |
| cols, | |
| expand_rowcol_bbox_top, | |
| expand_rowcol_bbox_bottom, | |
| padd_left, | |
| ) | |
| sequential_cell_img_list = [] | |
| for k, img_list in cells_img.items(): | |
| for img in img_list: | |
| sequential_cell_img_list.append(pytess(img)) | |
| csv_path = "/content/sample_data/table_" + str(idx) | |
| df = create_dataframe(sequential_cell_img_list, max_cols, max_rows, csv_path) | |
| result.append(df) | |
| output = postprocess_dataframes(result) | |
| return output | |
| title = "" | |
| description = "" | |
| article = "" | |
| examples = [] | |
| iface = gr.Interface( | |
| fn=process_image, | |
| inputs=gr.Image(type="pil"), | |
| outputs="text", | |
| title=title, | |
| description=description, | |
| article=article, | |
| examples=examples, | |
| ) | |
| iface.launch(debug=False) |