Spaces:
Running
Running
| import torch | |
| import gradio as gr | |
| from diffusers import ( | |
| StableDiffusionPipeline, | |
| StableDiffusionInstructPix2PixPipeline, | |
| StableVideoDiffusionPipeline, | |
| WanPipeline, | |
| ) | |
| from diffusers.utils import export_to_video, load_image | |
| import random | |
| import numpy as np | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| dtype = torch.float16 if device == "cuda" else torch.float32 | |
| MAX_SEED = np.iinfo(np.int32).max | |
| # Model cache | |
| TXT2IMG_PIPE = None | |
| IMG2IMG_PIPE = None | |
| TXT2VID_PIPE = None | |
| IMG2VID_PIPE = None | |
| def make_pipe(cls, model_id, **kwargs): | |
| pipe = cls.from_pretrained(model_id, torch_dtype=dtype, **kwargs) | |
| pipe.enable_model_cpu_offload() | |
| return pipe | |
| # Functions | |
| def generate_image_from_text(prompt, seed, randomize_seed): | |
| global TXT2IMG_PIPE | |
| if TXT2IMG_PIPE is None: | |
| TXT2IMG_PIPE = make_pipe(StableDiffusionPipeline, "stabilityai/stable-diffusion-2-1-base").to(device) | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| generator = torch.manual_seed(seed) | |
| image = TXT2IMG_PIPE(prompt=prompt, num_inference_steps=20, generator=generator).images[0] | |
| return image, seed | |
| def generate_image_from_image_and_prompt(image, prompt, seed, randomize_seed): | |
| global IMG2IMG_PIPE | |
| if IMG2IMG_PIPE is None: | |
| IMG2IMG_PIPE = make_pipe(StableDiffusionInstructPix2PixPipeline, "timbrooks/instruct-pix2pix").to(device) | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| generator = torch.manual_seed(seed) | |
| out = IMG2IMG_PIPE(prompt=prompt, image=image, num_inference_steps=8, generator=generator) | |
| return out.images[0], seed | |
| def generate_video_from_text(prompt, seed, randomize_seed): | |
| global TXT2VID_PIPE | |
| if TXT2VID_PIPE is None: | |
| TXT2VID_PIPE = make_pipe(WanPipeline, "Wan-AI/Wan2.1-T2V-1.3B-Diffusers").to(device) | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| generator = torch.manual_seed(seed) | |
| frames = TXT2VID_PIPE(prompt=prompt, num_frames=12, generator=generator).frames[0] | |
| return export_to_video(frames, "/tmp/wan_video.mp4", fps=8), seed | |
| def generate_video_from_image(image, seed, randomize_seed): | |
| global IMG2VID_PIPE | |
| if IMG2VID_PIPE is None: | |
| IMG2VID_PIPE = make_pipe(StableVideoDiffusionPipeline, "stabilityai/stable-video-diffusion-img2vid-xt", variant="fp16" if dtype == torch.float16 else None).to(device) | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| generator = torch.manual_seed(seed) | |
| image = load_image(image).resize((512, 288)) | |
| frames = IMG2VID_PIPE(image=image, num_inference_steps=16, generator=generator).frames[0] | |
| return export_to_video(frames, "/tmp/svd_video.mp4", fps=8), seed | |
| # UI | |
| with gr.Blocks(css="footer {display:none !important}") as demo: | |
| gr.Markdown("# π§ AI Playground β Multi-Mode Generator") | |
| with gr.Tabs(): | |
| # Text β Image | |
| with gr.Tab("Text β Image"): | |
| with gr.Row(): | |
| prompt_txt = gr.Textbox(label="Prompt") | |
| generate_btn = gr.Button("Generate") | |
| result_img = gr.Image() | |
| seed_txt = gr.Slider(0, MAX_SEED, value=42, label="Seed") | |
| rand_seed_txt = gr.Checkbox(label="Randomize seed", value=True) | |
| generate_btn.click( | |
| fn=generate_image_from_text, | |
| inputs=[prompt_txt, seed_txt, rand_seed_txt], | |
| outputs=[result_img, seed_txt] | |
| ) | |
| # Image β Image | |
| with gr.Tab("Image β Image"): | |
| with gr.Row(): | |
| image_in = gr.Image(label="Input Image") | |
| prompt_img = gr.Textbox(label="Edit Prompt") | |
| generate_btn2 = gr.Button("Generate") | |
| result_img2 = gr.Image() | |
| seed_img = gr.Slider(0, MAX_SEED, value=123, label="Seed") | |
| rand_seed_img = gr.Checkbox(label="Randomize seed", value=True) | |
| generate_btn2.click( | |
| fn=generate_image_from_image_and_prompt, | |
| inputs=[image_in, prompt_img, seed_img, rand_seed_img], | |
| outputs=[result_img2, seed_img] | |
| ) | |
| # Text β Video | |
| with gr.Tab("Text β Video"): | |
| with gr.Row(): | |
| prompt_vid = gr.Textbox(label="Prompt") | |
| generate_btn3 = gr.Button("Generate") | |
| result_vid = gr.Video() | |
| seed_vid = gr.Slider(0, MAX_SEED, value=555, label="Seed") | |
| rand_seed_vid = gr.Checkbox(label="Randomize seed", value=True) | |
| generate_btn3.click( | |
| fn=generate_video_from_text, | |
| inputs=[prompt_vid, seed_vid, rand_seed_vid], | |
| outputs=[result_vid, seed_vid] | |
| ) | |
| # Image β Video | |
| with gr.Tab("Image β Video"): | |
| with gr.Row(): | |
| image_in_vid = gr.Image(label="Input Image") | |
| generate_btn4 = gr.Button("Animate") | |
| result_vid2 = gr.Video() | |
| seed_vid2 = gr.Slider(0, MAX_SEED, value=999, label="Seed") | |
| rand_seed_vid2 = gr.Checkbox(label="Randomize seed", value=True) | |
| generate_btn4.click( | |
| fn=generate_video_from_image, | |
| inputs=[image_in_vid, seed_vid2, rand_seed_vid2], | |
| outputs=[result_vid2, seed_vid2] | |
| ) | |
| demo.queue() | |
| demo.launch(show_error=True) | |