Spaces:
Runtime error
Runtime error
| from huggingface_hub import from_pretrained_keras | |
| import matplotlib.pyplot as plt | |
| from math import sqrt, ceil | |
| import tensorflow as tf | |
| import gradio as gr | |
| import numpy as np | |
| model = from_pretrained_keras("IMvision12/WGAN-GP") | |
| def create_digit_samples(num_images): | |
| random_latent_vectors = tf.random.normal(shape=(int(num_images), 128)) | |
| predictions = model.predict(random_latent_vectors) | |
| num = ceil(sqrt(num_images)) | |
| digit_images = np.zeros((28*num, 28*num), dtype=float) | |
| n = 0 | |
| for i in range(num): | |
| for j in range(num): | |
| if n == num_images: | |
| break | |
| digit_images[i* 28 : (i+1)*28, j*28 : (j+1)*28] = predictions[n, :, :, 0] | |
| n += 1 | |
| return digit_images | |
| title = "WGAN-GP" | |
| description = "Image Generation Using WGAN" | |
| article = """ | |
| <p style='text-align: center'> | |
| <a href='https://keras.io/examples/generative/wgan_gp/' target='_blank'>Keras Example given by A_K_Nain</a> | |
| <br> | |
| Space by Gitesh Chawda | |
| </p> | |
| """ | |
| inputs = gr.inputs.Number(label="number of images") | |
| outputs = gr.outputs.Image(label="Predictions") | |
| examples = [ | |
| [4], | |
| [7], | |
| [8], | |
| [2], | |
| [10] | |
| ] | |
| gr.Interface(create_digit_samples, inputs, outputs, title=title, examples=examples, description=description, article=article, analytics_enabled=False).launch(debug=True) |