Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import SwinForImageClassification, SwinImageProcessor
|
| 3 |
+
import torch
|
| 4 |
+
from PIL import Image
|
| 5 |
+
|
| 6 |
+
# Cihaz ayarı
|
| 7 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 8 |
+
|
| 9 |
+
# Modeli ve işlemciyi doğrudan Hugging Face'den yükle
|
| 10 |
+
model_name = "kedimestan/swin-base-patch4-window7-224"
|
| 11 |
+
|
| 12 |
+
# Model ve işlemciyi yükle
|
| 13 |
+
model = SwinForImageClassification.from_pretrained(model_name)
|
| 14 |
+
processor = SwinImageProcessor.from_pretrained(model_name)
|
| 15 |
+
|
| 16 |
+
model = model.to(device)
|
| 17 |
+
model.eval()
|
| 18 |
+
|
| 19 |
+
# Tahmin fonksiyonu
|
| 20 |
+
def predict(image: Image.Image):
|
| 21 |
+
# Görüntüyü işlemci ile işleme
|
| 22 |
+
inputs = processor(images=image, return_tensors="pt").to(device)
|
| 23 |
+
|
| 24 |
+
# Modeli kullanarak tahmin yapma
|
| 25 |
+
with torch.no_grad():
|
| 26 |
+
logits = model(**inputs).logits
|
| 27 |
+
|
| 28 |
+
# Tahmin sonucu (maksimum sınıf)
|
| 29 |
+
predicted_class_idx = logits.argmax(-1).item()
|
| 30 |
+
prediction = f"Sınıf {predicted_class_idx}"
|
| 31 |
+
return prediction
|
| 32 |
+
|
| 33 |
+
# Gradio arayüzü
|
| 34 |
+
inputs = gr.Image(type="pil", label="Görsel Yükle")
|
| 35 |
+
outputs = gr.Textbox(label="Tahmin Sonucu")
|
| 36 |
+
|
| 37 |
+
gr.Interface(
|
| 38 |
+
fn=predict,
|
| 39 |
+
inputs=inputs,
|
| 40 |
+
outputs=outputs,
|
| 41 |
+
title="Swin Transformer Görüntü Sınıflandırma",
|
| 42 |
+
theme="default"
|
| 43 |
+
).launch(debug=True)
|