File size: 13,890 Bytes
e05484b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
# app.py — KC Robot AI v4.2 — Cloud Brain (Gradio + REST API)
# Features:
# - Gradio UI (chat, record, TTS)
# - HF Inference API for text generation & STT (requires HF_API_TOKEN in Secrets to use)
# - gTTS TTS (fallback)
# - Telegram notify (optional via TELEGRAM_TOKEN & TELEGRAM_CHATID)
# - Endpoints for ESP32: /api/ask, /api/tts, /api/stt, /api/presence, /api/display, /api/config
# Notes: Add HF_API_TOKEN (and optional TELEGRAM_TOKEN/TELEGRAM_CHATID) in Space Secrets.
import os, io, time, threading, logging
from typing import Any, List, Tuple, Optional
import requests, gradio as gr
from gtts import gTTS
from fastapi import Request, UploadFile, File
from starlette.responses import JSONResponse, Response
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger("kcrobot.v4.2.cloud")
HF_API_TOKEN = os.getenv("HF_API_TOKEN", "").strip()
HF_MODEL = os.getenv("HF_MODEL", "google/flan-t5-large").strip()
HF_STT_MODEL = os.getenv("HF_STT_MODEL", "openai/whisper-small").strip()
TELEGRAM_TOKEN = os.getenv("TELEGRAM_TOKEN", "").strip()
TELEGRAM_CHATID = os.getenv("TELEGRAM_CHATID", "").strip()
HF_HEADERS = {"Authorization": f"Bearer {HF_API_TOKEN}"} if HF_API_TOKEN else {}
CONVERSATION: List[Tuple[str, str]] = []
DISPLAY_BUFFER: List[str] = []
DISPLAY_LIMIT = 16
def push_display(line: str):
DISPLAY_BUFFER.append(line)
if len(DISPLAY_BUFFER) > DISPLAY_LIMIT:
DISPLAY_BUFFER.pop(0)
def detect_vi_or_en(text: str) -> str:
if not text: return "en"
vi_chars = "ăâđêôơưáàảãạắằẳẵặấầẩẫậéèẻẽẹíìỉĩịóòỏõọúùủũụýỳỷỹỵ"
for ch in text.lower():
if ch in vi_chars:
return "vi"
return "en"
def _parse_hf_text_response(data: Any) -> str:
try:
if isinstance(data, list) and data and isinstance(data[0], dict):
return data[0].get("generated_text", "") or str(data[0])
if isinstance(data, dict) and "generated_text" in data:
return data.get("generated_text", "")
if isinstance(data, dict) and "text" in data:
return data.get("text", "")
if isinstance(data, dict) and "choices" in data:
c0 = data["choices"][0]
return c0.get("text") or c0.get("message", {}).get("content", "") or str(c0)
return str(data)
except Exception:
return str(data)
def hf_text_generate(prompt: str, model: Optional[str] = None, max_new_tokens: int = 256, temperature: float = 0.7) -> str:
if not HF_API_TOKEN:
return "[ERROR] HF_API_TOKEN not configured in Space Secrets."
model = model or HF_MODEL
url = f"https://api-inference.huggingface.co/models/{model}"
payload = {"inputs": prompt, "parameters": {"max_new_tokens": int(max_new_tokens), "temperature": float(temperature)}, "options": {"wait_for_model": True}}
try:
r = requests.post(url, headers=HF_HEADERS, json=payload, timeout=120)
if r.status_code != 200:
logger.error("HF text gen failed %s: %s", r.status_code, r.text[:400])
return f"[ERROR] HF text gen {r.status_code}: {r.text[:300]}"
return _parse_hf_text_response(r.json())
except Exception as e:
logger.exception("HF text exception")
return f"[ERROR] HF text exception: {e}"
def hf_stt_from_bytes(audio_bytes: bytes, model: Optional[str] = None) -> str:
if not HF_API_TOKEN:
return "[ERROR] HF_API_TOKEN not configured."
model = model or HF_STT_MODEL
url = f"https://api-inference.huggingface.co/models/{model}"
headers = dict(HF_HEADERS); headers["Content-Type"] = "application/octet-stream"
try:
r = requests.post(url, headers=headers, data=audio_bytes, timeout=180)
if r.status_code != 200:
logger.error("HF STT failed %s: %s", r.status_code, r.text[:400])
return f"[ERROR] HF STT {r.status_code}: {r.text[:300]}"
out = r.json()
if isinstance(out, dict) and "text" in out:
return out["text"]
return _parse_hf_text_response(out)
except Exception as e:
logger.exception("HF STT exception")
return f"[ERROR] HF STT exception: {e}"
def tts_gtts_bytes(text: str) -> bytes:
if not text: return b""
lang = detect_vi_or_en(text)
try:
tts = gTTS(text=text, lang="vi" if lang == "vi" else "en")
bio = io.BytesIO(); tts.write_to_fp(bio); bio.seek(0)
return bio.read()
except Exception as e:
logger.exception("gTTS error")
return b""
def send_telegram_message(text: str):
if not TELEGRAM_TOKEN or not TELEGRAM_CHATID:
logger.debug("Telegram not configured")
return
try:
url = f"https://api.telegram.org/bot{TELEGRAM_TOKEN}/sendMessage"
requests.post(url, json={"chat_id": TELEGRAM_CHATID, "text": text}, timeout=10)
except Exception:
logger.exception("send_telegram_message failed")
def _start_telegram_poller():
if not TELEGRAM_TOKEN:
logger.info("Telegram poll disabled"); return
base = f"https://api.telegram.org/bot{TELEGRAM_TOKEN}"; offset = None
logger.info("Telegram poller started")
while True:
try:
params = {"timeout":30}
if offset: params["offset"] = offset
r = requests.get(base + "/getUpdates", params=params, timeout=35)
if r.status_code != 200:
time.sleep(2); continue
data = r.json()
for upd in data.get("result", []):
offset = upd.get("update_id", 0) + 1
msg = upd.get("message") or {}
chat = msg.get("chat", {}); chat_id = chat.get("id"); text = (msg.get("text") or "").strip()
if not text: continue
logger.info("TG msg: %s", text)
if text.lower().startswith("/ask "):
q = text[5:].strip(); ans = hf_text_generate(q)
requests.post(base + "/sendMessage", json={"chat_id": chat_id, "text": ans}, timeout=10)
elif text.lower().startswith("/say "):
phrase = text[5:].strip()
audio = tts_gtts_bytes(phrase)
if audio:
files = {"audio": ("reply.mp3", audio, "audio/mpeg")}
requests.post(base + "/sendAudio", files=files, data={"chat_id": chat_id}, timeout=30)
else:
requests.post(base + "/sendMessage", json={"chat_id": chat_id, "text": "[TTS failed]"}, timeout=10)
elif text.lower().startswith("/status"):
requests.post(base + "/sendMessage", json={"chat_id": chat_id, "text": "KC Robot brain running"}, timeout=10)
else:
requests.post(base + "/sendMessage", json={"chat_id": chat_id, "text": "Commands: /ask <q> | /say <text> | /status"}, timeout=10)
except Exception:
logger.exception("Telegram poller exception")
time.sleep(3)
if TELEGRAM_TOKEN:
t = threading.Thread(target=_start_telegram_poller, daemon=True); t.start()
# Gradio UI
with gr.Blocks(title="KC Robot AI v4.2 — Cloud Brain") as demo:
gr.Markdown("## 🤖 KC Robot AI v4.2 — Cloud Brain\n(Requires HF_API_TOKEN in Secrets for full AI/STT)")
with gr.Row():
with gr.Column(scale=2):
chatbot = gr.Chatbot(height=440, type="messages", elem_id="chatbot")
text_in = gr.Textbox(lines=2, placeholder="Nhập câu (VN/EN)...", label="Text input")
mic = gr.Audio(source="microphone", type="filepath", label="Record voice (browser mic)")
send = gr.Button("Send")
with gr.Row():
temp = gr.Slider(0.0, 1.0, value=0.7, label="Temperature")
tokens = gr.Slider(32, 1024, value=256, step=16, label="Max tokens")
model_override = gr.Textbox(label="HF model override (optional)")
with gr.Column(scale=1):
gr.Markdown("### TTS / STT")
tts_box = gr.Textbox(lines=2, label="Text → TTS")
tts_btn = gr.Button("Create TTS")
tts_audio = gr.Audio(label="TTS audio", interactive=False)
gr.Markdown("Upload audio for STT")
up = gr.Audio(source="upload", type="filepath", label="Upload audio")
stt_btn = gr.Button("Transcribe")
stt_out = gr.Textbox(label="Transcription")
def chat_fn(audio_file, typed_text, temperature, max_tokens, model_override_val, history):
user_text = (typed_text or "").strip()
if audio_file:
try:
with open(audio_file, "rb") as f: b = f.read()
stt = hf_stt_from_bytes(b)
if stt and not stt.startswith("[ERROR]"): user_text = stt
except Exception:
logger.exception("STT from audio failed")
if not user_text: return history or [], ""
prompt = f"You are KC Robot AI, bilingual assistant. Answer in the same language as the user.\n\nUser: {user_text}\nAssistant:"
model = model_override_val.strip() if model_override_val else HF_MODEL
ans = hf_text_generate(prompt, model=model, max_new_tokens=int(max_tokens), temperature=float(temperature))
CONVERSATION.append((user_text, ans)); push_display("YOU: "+user_text[:80]); push_display("BOT: "+ans[:80])
if TELEGRAM_TOKEN and TELEGRAM_CHATID:
try: send_telegram_message(f"You: {user_text}\nBot: {ans}")
except: logger.exception("telegram notify failed")
history = history or []; history.append(("You", user_text)); history.append(("Bot", ans))
return history, ""
def tts_fn(text_in, model_override_val):
if not text_in or not text_in.strip(): return None
audio = tts_gtts_bytes(text_in)
if audio == b"": raise gr.Error("TTS generation failed (gTTS).")
return (audio, "audio/mpeg")
def stt_fn(local_path, model_override_val):
if not local_path: return ""
with open(local_path, "rb") as f: b = f.read()
txt = hf_stt_from_bytes(b); push_display("Voice: "+(txt[:80] if isinstance(txt,str) else str(txt)))
return txt
send.click(chat_fn, inputs=[mic, text_in, temp, tokens, model_override], outputs=[chatbot, text_in])
tts_btn.click(tts_fn, inputs=[tts_box, model_override], outputs=[tts_audio])
stt_btn.click(stt_fn, inputs=[up, model_override], outputs=[stt_out])
# FastAPI endpoints for ESP32
app = demo.app
@app.post("/api/ask")
async def api_ask(req: Request):
try: j = await req.json()
except: return JSONResponse({"error":"invalid json"}, status_code=400)
text = (j.get("text","") or "").strip(); lang = (j.get("lang","auto") or "auto").strip().lower()
if not text: return JSONResponse({"error":"no text"}, status_code=400)
if not HF_API_TOKEN: return JSONResponse({"error":"HF_API_TOKEN not configured in Space Secrets."}, status_code=500)
if lang == "vi": prompt = "Bạn là trợ lý thông minh. Trả lời bằng tiếng Việt, rõ ràng:\n\n"+text
elif lang == "en": prompt = "You are a helpful assistant. Answer in English:\n\n"+text
else: prompt = "You are bilingual. Answer in the language of the question.\n\n"+text
ans = hf_text_generate(prompt); CONVERSATION.append((text, ans)); push_display("YOU: "+text[:80]); push_display("BOT: "+ans[:80])
return {"answer": ans}
@app.post("/api/tts")
async def api_tts(req: Request):
try: j = await req.json()
except: return JSONResponse({"error":"invalid json"}, status_code=400)
text = (j.get("text","") or "").strip()
if not text: return JSONResponse({"error":"no text"}, status_code=400)
audio = tts_gtts_bytes(text)
if audio == b"": return JSONResponse({"error":"TTS generation failed (gTTS)."}, status_code=500)
return Response(content=audio, media_type="audio/mpeg")
@app.post("/api/stt")
async def api_stt(file: UploadFile = File(...)):
try: content = await file.read()
except: return JSONResponse({"error":"file read error"}, status_code=400)
if not content: return JSONResponse({"error":"no audio content"}, status_code=400)
if not HF_API_TOKEN: return JSONResponse({"error":"HF_API_TOKEN not configured in Space Secrets."}, status_code=500)
txt = hf_stt_from_bytes(content)
CONVERSATION.append((f"[voice] {txt}", "")); push_display("Voice: "+(txt[:80] if isinstance(txt,str) else str(txt)))
return {"text": txt}
@app.post("/api/presence")
async def api_presence(req: Request):
try: j = await req.json()
except: return JSONResponse({"error":"invalid json"}, status_code=400)
note = (j.get("note","Có người phía trước") or "").strip()
greeting = f"Xin chào! {note}"
push_display("RADAR: "+note[:80]); CONVERSATION.append(("__presence__", greeting))
if TELEGRAM_TOKEN and TELEGRAM_CHATID:
try: send_telegram_message(f"⚠️ Robot: Phát hiện người - {note}")
except: logger.exception("telegram notify failed")
# Also produce a friendly greeting for the robot to play
# Return the greeting so ESP32 can fetch via /api/tts if desired
return {"greeting": greeting}
@app.get("/api/display")
async def api_display():
return {"lines": DISPLAY_BUFFER.copy(), "conv_len": len(CONVERSATION)}
@app.post("/api/config")
async def api_config(req: Request):
try: j = await req.json()
except: return JSONResponse({"error":"invalid json"}, status_code=400)
changed = {}; global HF_MODEL, HF_STT_MODEL
if "hf_model" in j: HF_MODEL = j["hf_model"]; changed["hf_model"]=HF_MODEL
if "hf_stt_model" in j: HF_STT_MODEL = j["hf_stt_model"]; changed["hf_stt_model"]=HF_STT_MODEL
return {"changed": changed}
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=int(os.environ.get("PORT", 7860)))
|