File size: 13,890 Bytes
e05484b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283

# app.py — KC Robot AI v4.2 — Cloud Brain (Gradio + REST API)
# Features:
# - Gradio UI (chat, record, TTS)
# - HF Inference API for text generation & STT (requires HF_API_TOKEN in Secrets to use)
# - gTTS TTS (fallback)
# - Telegram notify (optional via TELEGRAM_TOKEN & TELEGRAM_CHATID)
# - Endpoints for ESP32: /api/ask, /api/tts, /api/stt, /api/presence, /api/display, /api/config
# Notes: Add HF_API_TOKEN (and optional TELEGRAM_TOKEN/TELEGRAM_CHATID) in Space Secrets.

import os, io, time, threading, logging
from typing import Any, List, Tuple, Optional
import requests, gradio as gr
from gtts import gTTS
from fastapi import Request, UploadFile, File
from starlette.responses import JSONResponse, Response

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger("kcrobot.v4.2.cloud")

HF_API_TOKEN = os.getenv("HF_API_TOKEN", "").strip()
HF_MODEL = os.getenv("HF_MODEL", "google/flan-t5-large").strip()
HF_STT_MODEL = os.getenv("HF_STT_MODEL", "openai/whisper-small").strip()

TELEGRAM_TOKEN = os.getenv("TELEGRAM_TOKEN", "").strip()
TELEGRAM_CHATID = os.getenv("TELEGRAM_CHATID", "").strip()

HF_HEADERS = {"Authorization": f"Bearer {HF_API_TOKEN}"} if HF_API_TOKEN else {}

CONVERSATION: List[Tuple[str, str]] = []
DISPLAY_BUFFER: List[str] = []
DISPLAY_LIMIT = 16

def push_display(line: str):
    DISPLAY_BUFFER.append(line)
    if len(DISPLAY_BUFFER) > DISPLAY_LIMIT:
        DISPLAY_BUFFER.pop(0)

def detect_vi_or_en(text: str) -> str:
    if not text: return "en"
    vi_chars = "ăâđêôơưáàảãạắằẳẵặấầẩẫậéèẻẽẹíìỉĩịóòỏõọúùủũụýỳỷỹỵ"
    for ch in text.lower():
        if ch in vi_chars:
            return "vi"
    return "en"

def _parse_hf_text_response(data: Any) -> str:
    try:
        if isinstance(data, list) and data and isinstance(data[0], dict):
            return data[0].get("generated_text", "") or str(data[0])
        if isinstance(data, dict) and "generated_text" in data:
            return data.get("generated_text", "")
        if isinstance(data, dict) and "text" in data:
            return data.get("text", "")
        if isinstance(data, dict) and "choices" in data:
            c0 = data["choices"][0]
            return c0.get("text") or c0.get("message", {}).get("content", "") or str(c0)
        return str(data)
    except Exception:
        return str(data)

def hf_text_generate(prompt: str, model: Optional[str] = None, max_new_tokens: int = 256, temperature: float = 0.7) -> str:
    if not HF_API_TOKEN:
        return "[ERROR] HF_API_TOKEN not configured in Space Secrets."
    model = model or HF_MODEL
    url = f"https://api-inference.huggingface.co/models/{model}"
    payload = {"inputs": prompt, "parameters": {"max_new_tokens": int(max_new_tokens), "temperature": float(temperature)}, "options": {"wait_for_model": True}}
    try:
        r = requests.post(url, headers=HF_HEADERS, json=payload, timeout=120)
        if r.status_code != 200:
            logger.error("HF text gen failed %s: %s", r.status_code, r.text[:400])
            return f"[ERROR] HF text gen {r.status_code}: {r.text[:300]}"
        return _parse_hf_text_response(r.json())
    except Exception as e:
        logger.exception("HF text exception")
        return f"[ERROR] HF text exception: {e}"

def hf_stt_from_bytes(audio_bytes: bytes, model: Optional[str] = None) -> str:
    if not HF_API_TOKEN:
        return "[ERROR] HF_API_TOKEN not configured."
    model = model or HF_STT_MODEL
    url = f"https://api-inference.huggingface.co/models/{model}"
    headers = dict(HF_HEADERS); headers["Content-Type"] = "application/octet-stream"
    try:
        r = requests.post(url, headers=headers, data=audio_bytes, timeout=180)
        if r.status_code != 200:
            logger.error("HF STT failed %s: %s", r.status_code, r.text[:400])
            return f"[ERROR] HF STT {r.status_code}: {r.text[:300]}"
        out = r.json()
        if isinstance(out, dict) and "text" in out:
            return out["text"]
        return _parse_hf_text_response(out)
    except Exception as e:
        logger.exception("HF STT exception")
        return f"[ERROR] HF STT exception: {e}"

def tts_gtts_bytes(text: str) -> bytes:
    if not text: return b""
    lang = detect_vi_or_en(text)
    try:
        tts = gTTS(text=text, lang="vi" if lang == "vi" else "en")
        bio = io.BytesIO(); tts.write_to_fp(bio); bio.seek(0)
        return bio.read()
    except Exception as e:
        logger.exception("gTTS error")
        return b""

def send_telegram_message(text: str):
    if not TELEGRAM_TOKEN or not TELEGRAM_CHATID:
        logger.debug("Telegram not configured")
        return
    try:
        url = f"https://api.telegram.org/bot{TELEGRAM_TOKEN}/sendMessage"
        requests.post(url, json={"chat_id": TELEGRAM_CHATID, "text": text}, timeout=10)
    except Exception:
        logger.exception("send_telegram_message failed")

def _start_telegram_poller():
    if not TELEGRAM_TOKEN: 
        logger.info("Telegram poll disabled"); return
    base = f"https://api.telegram.org/bot{TELEGRAM_TOKEN}"; offset = None
    logger.info("Telegram poller started")
    while True:
        try:
            params = {"timeout":30}
            if offset: params["offset"] = offset
            r = requests.get(base + "/getUpdates", params=params, timeout=35)
            if r.status_code != 200:
                time.sleep(2); continue
            data = r.json()
            for upd in data.get("result", []):
                offset = upd.get("update_id", 0) + 1
                msg = upd.get("message") or {}
                chat = msg.get("chat", {}); chat_id = chat.get("id"); text = (msg.get("text") or "").strip()
                if not text: continue
                logger.info("TG msg: %s", text)
                if text.lower().startswith("/ask "):
                    q = text[5:].strip(); ans = hf_text_generate(q)
                    requests.post(base + "/sendMessage", json={"chat_id": chat_id, "text": ans}, timeout=10)
                elif text.lower().startswith("/say "):
                    phrase = text[5:].strip()
                    audio = tts_gtts_bytes(phrase)
                    if audio:
                        files = {"audio": ("reply.mp3", audio, "audio/mpeg")}
                        requests.post(base + "/sendAudio", files=files, data={"chat_id": chat_id}, timeout=30)
                    else:
                        requests.post(base + "/sendMessage", json={"chat_id": chat_id, "text": "[TTS failed]"}, timeout=10)
                elif text.lower().startswith("/status"):
                    requests.post(base + "/sendMessage", json={"chat_id": chat_id, "text": "KC Robot brain running"}, timeout=10)
                else:
                    requests.post(base + "/sendMessage", json={"chat_id": chat_id, "text": "Commands: /ask <q> | /say <text> | /status"}, timeout=10)
        except Exception:
            logger.exception("Telegram poller exception")
            time.sleep(3)

if TELEGRAM_TOKEN:
    t = threading.Thread(target=_start_telegram_poller, daemon=True); t.start()

# Gradio UI
with gr.Blocks(title="KC Robot AI v4.2 — Cloud Brain") as demo:
    gr.Markdown("## 🤖 KC Robot AI v4.2 — Cloud Brain\n(Requires HF_API_TOKEN in Secrets for full AI/STT)")
    with gr.Row():
        with gr.Column(scale=2):
            chatbot = gr.Chatbot(height=440, type="messages", elem_id="chatbot")
            text_in = gr.Textbox(lines=2, placeholder="Nhập câu (VN/EN)...", label="Text input")
            mic = gr.Audio(source="microphone", type="filepath", label="Record voice (browser mic)")
            send = gr.Button("Send")
            with gr.Row():
                temp = gr.Slider(0.0, 1.0, value=0.7, label="Temperature")
                tokens = gr.Slider(32, 1024, value=256, step=16, label="Max tokens")
            model_override = gr.Textbox(label="HF model override (optional)")
        with gr.Column(scale=1):
            gr.Markdown("### TTS / STT")
            tts_box = gr.Textbox(lines=2, label="Text → TTS")
            tts_btn = gr.Button("Create TTS")
            tts_audio = gr.Audio(label="TTS audio", interactive=False)
            gr.Markdown("Upload audio for STT")
            up = gr.Audio(source="upload", type="filepath", label="Upload audio")
            stt_btn = gr.Button("Transcribe")
            stt_out = gr.Textbox(label="Transcription")

    def chat_fn(audio_file, typed_text, temperature, max_tokens, model_override_val, history):
        user_text = (typed_text or "").strip()
        if audio_file:
            try:
                with open(audio_file, "rb") as f: b = f.read()
                stt = hf_stt_from_bytes(b)
                if stt and not stt.startswith("[ERROR]"): user_text = stt
            except Exception:
                logger.exception("STT from audio failed")
        if not user_text: return history or [], ""
        prompt = f"You are KC Robot AI, bilingual assistant. Answer in the same language as the user.\n\nUser: {user_text}\nAssistant:"
        model = model_override_val.strip() if model_override_val else HF_MODEL
        ans = hf_text_generate(prompt, model=model, max_new_tokens=int(max_tokens), temperature=float(temperature))
        CONVERSATION.append((user_text, ans)); push_display("YOU: "+user_text[:80]); push_display("BOT: "+ans[:80])
        if TELEGRAM_TOKEN and TELEGRAM_CHATID:
            try: send_telegram_message(f"You: {user_text}\nBot: {ans}")
            except: logger.exception("telegram notify failed")
        history = history or []; history.append(("You", user_text)); history.append(("Bot", ans))
        return history, ""

    def tts_fn(text_in, model_override_val):
        if not text_in or not text_in.strip(): return None
        audio = tts_gtts_bytes(text_in)
        if audio == b"": raise gr.Error("TTS generation failed (gTTS).")
        return (audio, "audio/mpeg")

    def stt_fn(local_path, model_override_val):
        if not local_path: return ""
        with open(local_path, "rb") as f: b = f.read()
        txt = hf_stt_from_bytes(b); push_display("Voice: "+(txt[:80] if isinstance(txt,str) else str(txt)))
        return txt

    send.click(chat_fn, inputs=[mic, text_in, temp, tokens, model_override], outputs=[chatbot, text_in])
    tts_btn.click(tts_fn, inputs=[tts_box, model_override], outputs=[tts_audio])
    stt_btn.click(stt_fn, inputs=[up, model_override], outputs=[stt_out])

# FastAPI endpoints for ESP32
app = demo.app

@app.post("/api/ask")
async def api_ask(req: Request):
    try: j = await req.json()
    except: return JSONResponse({"error":"invalid json"}, status_code=400)
    text = (j.get("text","") or "").strip(); lang = (j.get("lang","auto") or "auto").strip().lower()
    if not text: return JSONResponse({"error":"no text"}, status_code=400)
    if not HF_API_TOKEN: return JSONResponse({"error":"HF_API_TOKEN not configured in Space Secrets."}, status_code=500)
    if lang == "vi": prompt = "Bạn là trợ lý thông minh. Trả lời bằng tiếng Việt, rõ ràng:\n\n"+text
    elif lang == "en": prompt = "You are a helpful assistant. Answer in English:\n\n"+text
    else: prompt = "You are bilingual. Answer in the language of the question.\n\n"+text
    ans = hf_text_generate(prompt); CONVERSATION.append((text, ans)); push_display("YOU: "+text[:80]); push_display("BOT: "+ans[:80])
    return {"answer": ans}

@app.post("/api/tts")
async def api_tts(req: Request):
    try: j = await req.json()
    except: return JSONResponse({"error":"invalid json"}, status_code=400)
    text = (j.get("text","") or "").strip()
    if not text: return JSONResponse({"error":"no text"}, status_code=400)
    audio = tts_gtts_bytes(text)
    if audio == b"": return JSONResponse({"error":"TTS generation failed (gTTS)."}, status_code=500)
    return Response(content=audio, media_type="audio/mpeg")

@app.post("/api/stt")
async def api_stt(file: UploadFile = File(...)):
    try: content = await file.read()
    except: return JSONResponse({"error":"file read error"}, status_code=400)
    if not content: return JSONResponse({"error":"no audio content"}, status_code=400)
    if not HF_API_TOKEN: return JSONResponse({"error":"HF_API_TOKEN not configured in Space Secrets."}, status_code=500)
    txt = hf_stt_from_bytes(content)
    CONVERSATION.append((f"[voice] {txt}", "")); push_display("Voice: "+(txt[:80] if isinstance(txt,str) else str(txt)))
    return {"text": txt}

@app.post("/api/presence")
async def api_presence(req: Request):
    try: j = await req.json()
    except: return JSONResponse({"error":"invalid json"}, status_code=400)
    note = (j.get("note","Có người phía trước") or "").strip()
    greeting = f"Xin chào! {note}"
    push_display("RADAR: "+note[:80]); CONVERSATION.append(("__presence__", greeting))
    if TELEGRAM_TOKEN and TELEGRAM_CHATID:
        try: send_telegram_message(f"⚠️ Robot: Phát hiện người - {note}")
        except: logger.exception("telegram notify failed")
    # Also produce a friendly greeting for the robot to play
    # Return the greeting so ESP32 can fetch via /api/tts if desired
    return {"greeting": greeting}

@app.get("/api/display")
async def api_display():
    return {"lines": DISPLAY_BUFFER.copy(), "conv_len": len(CONVERSATION)}

@app.post("/api/config")
async def api_config(req: Request):
    try: j = await req.json()
    except: return JSONResponse({"error":"invalid json"}, status_code=400)
    changed = {}; global HF_MODEL, HF_STT_MODEL
    if "hf_model" in j: HF_MODEL = j["hf_model"]; changed["hf_model"]=HF_MODEL
    if "hf_stt_model" in j: HF_STT_MODEL = j["hf_stt_model"]; changed["hf_stt_model"]=HF_STT_MODEL
    return {"changed": changed}

if __name__ == "__main__":
    demo.launch(server_name="0.0.0.0", server_port=int(os.environ.get("PORT", 7860)))