Spaces:
Sleeping
Sleeping
| from network import U2NET | |
| import os | |
| from PIL import Image | |
| import cv2 | |
| import gdown | |
| import argparse | |
| import numpy as np | |
| import torch | |
| import torch.nn.functional as F | |
| import torchvision.transforms as transforms | |
| from collections import OrderedDict | |
| from options import opt | |
| def load_checkpoint(model, checkpoint_path): | |
| if not os.path.exists(checkpoint_path): | |
| print("----No checkpoints at given path----") | |
| return | |
| model_state_dict = torch.load(checkpoint_path, map_location=torch.device("cpu")) | |
| new_state_dict = OrderedDict() | |
| for k, v in model_state_dict.items(): | |
| name = k[7:] # remove `module.` | |
| new_state_dict[name] = v | |
| model.load_state_dict(new_state_dict) | |
| print("----checkpoints loaded from path: {}----".format(checkpoint_path)) | |
| return model | |
| def get_palette(num_cls): | |
| """ Returns the color map for visualizing the segmentation mask. | |
| Args: | |
| num_cls: Number of classes | |
| Returns: | |
| The color map | |
| """ | |
| n = num_cls | |
| palette = [0] * (n * 3) | |
| for j in range(0, n): | |
| lab = j | |
| palette[j * 3 + 0] = 0 | |
| palette[j * 3 + 1] = 0 | |
| palette[j * 3 + 2] = 0 | |
| i = 0 | |
| while lab: | |
| palette[j * 3 + 0] |= (((lab >> 0) & 1) << (7 - i)) | |
| palette[j * 3 + 1] |= (((lab >> 1) & 1) << (7 - i)) | |
| palette[j * 3 + 2] |= (((lab >> 2) & 1) << (7 - i)) | |
| i += 1 | |
| lab >>= 3 | |
| return palette | |
| class Normalize_image(object): | |
| """Normalize given tensor into given mean and standard dev | |
| Args: | |
| mean (float): Desired mean to substract from tensors | |
| std (float): Desired std to divide from tensors | |
| """ | |
| def __init__(self, mean, std): | |
| assert isinstance(mean, (float)) | |
| if isinstance(mean, float): | |
| self.mean = mean | |
| if isinstance(std, float): | |
| self.std = std | |
| self.normalize_1 = transforms.Normalize(self.mean, self.std) | |
| self.normalize_3 = transforms.Normalize([self.mean] * 3, [self.std] * 3) | |
| self.normalize_18 = transforms.Normalize([self.mean] * 18, [self.std] * 18) | |
| def __call__(self, image_tensor): | |
| if image_tensor.shape[0] == 1: | |
| return self.normalize_1(image_tensor) | |
| elif image_tensor.shape[0] == 3: | |
| return self.normalize_3(image_tensor) | |
| elif image_tensor.shape[0] == 18: | |
| return self.normalize_18(image_tensor) | |
| else: | |
| assert "Please set proper channels! Normlization implemented only for 1, 3 and 18" | |
| def apply_transform(img): | |
| transforms_list = [] | |
| transforms_list += [transforms.ToTensor()] | |
| transforms_list += [Normalize_image(0.5, 0.5)] | |
| transform_rgb = transforms.Compose(transforms_list) | |
| return transform_rgb(img) | |
| def generate_mask(input_image, net, palette, device = 'cpu'): | |
| #img = Image.open(input_image).convert('RGB') | |
| img = input_image | |
| img_size = img.size | |
| img = img.resize((768, 768), Image.BICUBIC) | |
| image_tensor = apply_transform(img) | |
| image_tensor = torch.unsqueeze(image_tensor, 0) | |
| alpha_out_dir = os.path.join(opt.output,'alpha') | |
| cloth_seg_out_dir = os.path.join(opt.output,'cloth_seg') | |
| os.makedirs(alpha_out_dir, exist_ok=True) | |
| os.makedirs(cloth_seg_out_dir, exist_ok=True) | |
| with torch.no_grad(): | |
| output_tensor = net(image_tensor.to(device)) | |
| output_tensor = F.log_softmax(output_tensor[0], dim=1) | |
| output_tensor = torch.max(output_tensor, dim=1, keepdim=True)[1] | |
| output_tensor = torch.squeeze(output_tensor, dim=0) | |
| output_arr = output_tensor.cpu().numpy() | |
| classes_to_save = [] | |
| # Check which classes are present in the image | |
| for cls in range(1, 4): # Exclude background class (0) | |
| if np.any(output_arr == cls): | |
| classes_to_save.append(cls) | |
| # Save alpha masks | |
| for cls in classes_to_save: | |
| alpha_mask = (output_arr == cls).astype(np.uint8) * 255 | |
| alpha_mask = alpha_mask[0] # Selecting the first channel to make it 2D | |
| alpha_mask_img = Image.fromarray(alpha_mask, mode='L') | |
| alpha_mask_img = alpha_mask_img.resize(img_size, Image.BICUBIC) | |
| alpha_mask_img.save(os.path.join(alpha_out_dir, f'{cls}.png')) | |
| # Save final cloth segmentations | |
| cloth_seg = Image.fromarray(output_arr[0].astype(np.uint8), mode='P') | |
| cloth_seg.putpalette(palette) | |
| cloth_seg = cloth_seg.resize(img_size, Image.BICUBIC) | |
| cloth_seg.save(os.path.join(cloth_seg_out_dir, 'final_seg.png')) | |
| return cloth_seg | |
| def check_or_download_model(file_path): | |
| if not os.path.exists(file_path): | |
| os.makedirs(os.path.dirname(file_path), exist_ok=True) | |
| url = "https://drive.google.com/uc?id=11xTBALOeUkyuaK3l60CpkYHLTmv7k3dY" | |
| gdown.download(url, file_path, quiet=False) | |
| print("Model downloaded successfully.") | |
| else: | |
| print("Model already exists.") | |
| def load_seg_model(checkpoint_path, device='cpu'): | |
| net = U2NET(in_ch=3, out_ch=4) | |
| check_or_download_model(checkpoint_path) | |
| net = load_checkpoint(net, checkpoint_path) | |
| net = net.to(device) | |
| net = net.eval() | |
| return net | |
| def main(args): | |
| device = 'cuda:0' if args.cuda else 'cpu' | |
| # Create an instance of your model | |
| model = load_seg_model(args.checkpoint_path, device=device) | |
| palette = get_palette(4) | |
| img = Image.open(args.image).convert('RGB') | |
| cloth_seg = generate_mask(img, net=model, palette=palette, device=device) | |
| if __name__ == '__main__': | |
| parser = argparse.ArgumentParser(description='Help to set arguments for Cloth Segmentation.') | |
| parser.add_argument('--image', type=str, help='Path to the input image') | |
| parser.add_argument('--cuda', action='store_true', help='Enable CUDA (default: False)') | |
| parser.add_argument('--checkpoint_path', type=str, default='model/cloth_segm.pth', help='Path to the checkpoint file') | |
| args = parser.parse_args() | |
| main(args) |