Spaces:
Runtime error
Runtime error
| # Plotting utils | |
| import glob | |
| import math | |
| import os | |
| import random | |
| from copy import copy | |
| from pathlib import Path | |
| import cv2 | |
| import matplotlib | |
| import matplotlib.pyplot as plt | |
| import numpy as np | |
| import torch | |
| import yaml | |
| from PIL import Image | |
| from scipy.signal import butter, filtfilt | |
| from utils.general import xywh2xyxy, xyxy2xywh | |
| from utils.metrics import fitness | |
| # Settings | |
| matplotlib.use('Agg') # for writing to files only | |
| def color_list(): | |
| # Return first 10 plt colors as (r,g,b) https://stackoverflow.com/questions/51350872/python-from-color-name-to-rgb | |
| def hex2rgb(h): | |
| return tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4)) | |
| return [hex2rgb(h) for h in plt.rcParams['axes.prop_cycle'].by_key()['color']] | |
| def hist2d(x, y, n=100): | |
| # 2d histogram used in labels.png and evolve.png | |
| xedges, yedges = np.linspace(x.min(), x.max(), n), np.linspace(y.min(), y.max(), n) | |
| hist, xedges, yedges = np.histogram2d(x, y, (xedges, yedges)) | |
| xidx = np.clip(np.digitize(x, xedges) - 1, 0, hist.shape[0] - 1) | |
| yidx = np.clip(np.digitize(y, yedges) - 1, 0, hist.shape[1] - 1) | |
| return np.log(hist[xidx, yidx]) | |
| def butter_lowpass_filtfilt(data, cutoff=1500, fs=50000, order=5): | |
| # https://stackoverflow.com/questions/28536191/how-to-filter-smooth-with-scipy-numpy | |
| def butter_lowpass(cutoff, fs, order): | |
| nyq = 0.5 * fs | |
| normal_cutoff = cutoff / nyq | |
| return butter(order, normal_cutoff, btype='low', analog=False) | |
| b, a = butter_lowpass(cutoff, fs, order=order) | |
| return filtfilt(b, a, data) # forward-backward filter | |
| def plot_one_box(x, img, color=None, label=None, line_thickness=None): | |
| # Plots one bounding box on image img | |
| tl = line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1 # line/font thickness | |
| color = color or [random.randint(0, 255) for _ in range(3)] | |
| c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3])) | |
| cv2.rectangle(img, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA) | |
| if label: | |
| tf = max(tl - 1, 1) # font thickness | |
| t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0] | |
| c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3 | |
| cv2.rectangle(img, c1, c2, color, -1, cv2.LINE_AA) # filled | |
| cv2.putText(img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA) | |
| def plot_wh_methods(): # from utils.general import *; plot_wh_methods() | |
| # Compares the two methods for width-height anchor multiplication | |
| # https://github.com/ultralytics/yolov3/issues/168 | |
| x = np.arange(-4.0, 4.0, .1) | |
| ya = np.exp(x) | |
| yb = torch.sigmoid(torch.from_numpy(x)).numpy() * 2 | |
| fig = plt.figure(figsize=(6, 3), dpi=150) | |
| plt.plot(x, ya, '.-', label='YOLO') | |
| plt.plot(x, yb ** 2, '.-', label='YOLO ^2') | |
| plt.plot(x, yb ** 1.6, '.-', label='YOLO ^1.6') | |
| plt.xlim(left=-4, right=4) | |
| plt.ylim(bottom=0, top=6) | |
| plt.xlabel('input') | |
| plt.ylabel('output') | |
| plt.grid() | |
| plt.legend() | |
| fig.tight_layout() | |
| fig.savefig('comparison.png', dpi=200) | |
| def output_to_target(output, width, height): | |
| # Convert model output to target format [batch_id, class_id, x, y, w, h, conf] | |
| if isinstance(output, torch.Tensor): | |
| output = output.cpu().numpy() | |
| targets = [] | |
| for i, o in enumerate(output): | |
| if o is not None: | |
| for pred in o: | |
| box = pred[:4] | |
| w = (box[2] - box[0]) / width | |
| h = (box[3] - box[1]) / height | |
| x = box[0] / width + w / 2 | |
| y = box[1] / height + h / 2 | |
| conf = pred[4] | |
| cls = int(pred[5]) | |
| targets.append([i, cls, x, y, w, h, conf]) | |
| return np.array(targets) | |
| def plot_images(images, targets, paths=None, fname='images.jpg', names=None, max_size=640, max_subplots=16): | |
| # Plot image grid with labels | |
| if isinstance(images, torch.Tensor): | |
| images = images.cpu().float().numpy() | |
| if isinstance(targets, torch.Tensor): | |
| targets = targets.cpu().numpy() | |
| # un-normalise | |
| if np.max(images[0]) <= 1: | |
| images *= 255 | |
| tl = 3 # line thickness | |
| tf = max(tl - 1, 1) # font thickness | |
| bs, _, h, w = images.shape # batch size, _, height, width | |
| bs = min(bs, max_subplots) # limit plot images | |
| ns = np.ceil(bs ** 0.5) # number of subplots (square) | |
| # Check if we should resize | |
| scale_factor = max_size / max(h, w) | |
| if scale_factor < 1: | |
| h = math.ceil(scale_factor * h) | |
| w = math.ceil(scale_factor * w) | |
| colors = color_list() # list of colors | |
| mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) # init | |
| for i, img in enumerate(images): | |
| if i == max_subplots: # if last batch has fewer images than we expect | |
| break | |
| block_x = int(w * (i // ns)) | |
| block_y = int(h * (i % ns)) | |
| img = img.transpose(1, 2, 0) | |
| if scale_factor < 1: | |
| img = cv2.resize(img, (w, h)) | |
| mosaic[block_y:block_y + h, block_x:block_x + w, :] = img | |
| if len(targets) > 0: | |
| image_targets = targets[targets[:, 0] == i] | |
| boxes = xywh2xyxy(image_targets[:, 2:6]).T | |
| classes = image_targets[:, 1].astype('int') | |
| labels = image_targets.shape[1] == 6 # labels if no conf column | |
| conf = None if labels else image_targets[:, 6] # check for confidence presence (label vs pred) | |
| boxes[[0, 2]] *= w | |
| boxes[[0, 2]] += block_x | |
| boxes[[1, 3]] *= h | |
| boxes[[1, 3]] += block_y | |
| for j, box in enumerate(boxes.T): | |
| cls = int(classes[j]) | |
| color = colors[cls % len(colors)] | |
| cls = names[cls] if names else cls | |
| if labels or conf[j] > 0.25: # 0.25 conf thresh | |
| label = '%s' % cls if labels else '%s %.1f' % (cls, conf[j]) | |
| plot_one_box(box, mosaic, label=label, color=color, line_thickness=tl) | |
| # Draw image filename labels | |
| if paths: | |
| label = Path(paths[i]).name[:40] # trim to 40 char | |
| t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0] | |
| cv2.putText(mosaic, label, (block_x + 5, block_y + t_size[1] + 5), 0, tl / 3, [220, 220, 220], thickness=tf, | |
| lineType=cv2.LINE_AA) | |
| # Image border | |
| cv2.rectangle(mosaic, (block_x, block_y), (block_x + w, block_y + h), (255, 255, 255), thickness=3) | |
| if fname: | |
| r = min(1280. / max(h, w) / ns, 1.0) # ratio to limit image size | |
| mosaic = cv2.resize(mosaic, (int(ns * w * r), int(ns * h * r)), interpolation=cv2.INTER_AREA) | |
| # cv2.imwrite(fname, cv2.cvtColor(mosaic, cv2.COLOR_BGR2RGB)) # cv2 save | |
| Image.fromarray(mosaic).save(fname) # PIL save | |
| return mosaic | |
| def plot_lr_scheduler(optimizer, scheduler, epochs=300, save_dir=''): | |
| # Plot LR simulating training for full epochs | |
| optimizer, scheduler = copy(optimizer), copy(scheduler) # do not modify originals | |
| y = [] | |
| for _ in range(epochs): | |
| scheduler.step() | |
| y.append(optimizer.param_groups[0]['lr']) | |
| plt.plot(y, '.-', label='LR') | |
| plt.xlabel('epoch') | |
| plt.ylabel('LR') | |
| plt.grid() | |
| plt.xlim(0, epochs) | |
| plt.ylim(0) | |
| plt.tight_layout() | |
| plt.savefig(Path(save_dir) / 'LR.png', dpi=200) | |
| def plot_test_txt(): # from utils.general import *; plot_test() | |
| # Plot test.txt histograms | |
| x = np.loadtxt('test.txt', dtype=np.float32) | |
| box = xyxy2xywh(x[:, :4]) | |
| cx, cy = box[:, 0], box[:, 1] | |
| fig, ax = plt.subplots(1, 1, figsize=(6, 6), tight_layout=True) | |
| ax.hist2d(cx, cy, bins=600, cmax=10, cmin=0) | |
| ax.set_aspect('equal') | |
| plt.savefig('hist2d.png', dpi=300) | |
| fig, ax = plt.subplots(1, 2, figsize=(12, 6), tight_layout=True) | |
| ax[0].hist(cx, bins=600) | |
| ax[1].hist(cy, bins=600) | |
| plt.savefig('hist1d.png', dpi=200) | |
| def plot_targets_txt(): # from utils.general import *; plot_targets_txt() | |
| # Plot targets.txt histograms | |
| x = np.loadtxt('targets.txt', dtype=np.float32).T | |
| s = ['x targets', 'y targets', 'width targets', 'height targets'] | |
| fig, ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True) | |
| ax = ax.ravel() | |
| for i in range(4): | |
| ax[i].hist(x[i], bins=100, label='%.3g +/- %.3g' % (x[i].mean(), x[i].std())) | |
| ax[i].legend() | |
| ax[i].set_title(s[i]) | |
| plt.savefig('targets.jpg', dpi=200) | |
| def plot_study_txt(f='study.txt', x=None): # from utils.general import *; plot_study_txt() | |
| # Plot study.txt generated by test.py | |
| fig, ax = plt.subplots(2, 4, figsize=(10, 6), tight_layout=True) | |
| ax = ax.ravel() | |
| fig2, ax2 = plt.subplots(1, 1, figsize=(8, 4), tight_layout=True) | |
| for f in ['study/study_coco_yolo%s.txt' % x for x in ['s', 'm', 'l', 'x']]: | |
| y = np.loadtxt(f, dtype=np.float32, usecols=[0, 1, 2, 3, 7, 8, 9], ndmin=2).T | |
| x = np.arange(y.shape[1]) if x is None else np.array(x) | |
| s = ['P', 'R', '[email protected]', '[email protected]:.95', 't_inference (ms/img)', 't_NMS (ms/img)', 't_total (ms/img)'] | |
| for i in range(7): | |
| ax[i].plot(x, y[i], '.-', linewidth=2, markersize=8) | |
| ax[i].set_title(s[i]) | |
| j = y[3].argmax() + 1 | |
| ax2.plot(y[6, :j], y[3, :j] * 1E2, '.-', linewidth=2, markersize=8, | |
| label=Path(f).stem.replace('study_coco_', '').replace('yolo', 'YOLO')) | |
| ax2.plot(1E3 / np.array([209, 140, 97, 58, 35, 18]), [34.6, 40.5, 43.0, 47.5, 49.7, 51.5], | |
| 'k.-', linewidth=2, markersize=8, alpha=.25, label='EfficientDet') | |
| ax2.grid() | |
| ax2.set_xlim(0, 30) | |
| ax2.set_ylim(28, 50) | |
| ax2.set_yticks(np.arange(30, 55, 5)) | |
| ax2.set_xlabel('GPU Speed (ms/img)') | |
| ax2.set_ylabel('COCO AP val') | |
| ax2.legend(loc='lower right') | |
| plt.savefig('study_mAP_latency.png', dpi=300) | |
| plt.savefig(f.replace('.txt', '.png'), dpi=300) | |
| def plot_labels(labels, save_dir=''): | |
| # plot dataset labels | |
| c, b = labels[:, 0], labels[:, 1:].transpose() # classes, boxes | |
| nc = int(c.max() + 1) # number of classes | |
| fig, ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True) | |
| ax = ax.ravel() | |
| ax[0].hist(c, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8) | |
| ax[0].set_xlabel('classes') | |
| ax[1].scatter(b[0], b[1], c=hist2d(b[0], b[1], 90), cmap='jet') | |
| ax[1].set_xlabel('x') | |
| ax[1].set_ylabel('y') | |
| ax[2].scatter(b[2], b[3], c=hist2d(b[2], b[3], 90), cmap='jet') | |
| ax[2].set_xlabel('width') | |
| ax[2].set_ylabel('height') | |
| plt.savefig(Path(save_dir) / 'labels.png', dpi=200) | |
| plt.close() | |
| # seaborn correlogram | |
| try: | |
| import seaborn as sns | |
| import pandas as pd | |
| x = pd.DataFrame(b.transpose(), columns=['x', 'y', 'width', 'height']) | |
| sns.pairplot(x, corner=True, diag_kind='hist', kind='scatter', markers='o', | |
| plot_kws=dict(s=3, edgecolor=None, linewidth=1, alpha=0.02), | |
| diag_kws=dict(bins=50)) | |
| plt.savefig(Path(save_dir) / 'labels_correlogram.png', dpi=200) | |
| plt.close() | |
| except Exception as e: | |
| pass | |
| def plot_evolution(yaml_file='data/hyp.finetune.yaml'): # from utils.general import *; plot_evolution() | |
| # Plot hyperparameter evolution results in evolve.txt | |
| with open(yaml_file) as f: | |
| hyp = yaml.load(f, Loader=yaml.FullLoader) | |
| x = np.loadtxt('evolve.txt', ndmin=2) | |
| f = fitness(x) | |
| # weights = (f - f.min()) ** 2 # for weighted results | |
| plt.figure(figsize=(10, 12), tight_layout=True) | |
| matplotlib.rc('font', **{'size': 8}) | |
| for i, (k, v) in enumerate(hyp.items()): | |
| y = x[:, i + 7] | |
| # mu = (y * weights).sum() / weights.sum() # best weighted result | |
| mu = y[f.argmax()] # best single result | |
| plt.subplot(6, 5, i + 1) | |
| plt.scatter(y, f, c=hist2d(y, f, 20), cmap='viridis', alpha=.8, edgecolors='none') | |
| plt.plot(mu, f.max(), 'k+', markersize=15) | |
| plt.title('%s = %.3g' % (k, mu), fontdict={'size': 9}) # limit to 40 characters | |
| if i % 5 != 0: | |
| plt.yticks([]) | |
| print('%15s: %.3g' % (k, mu)) | |
| plt.savefig('evolve.png', dpi=200) | |
| print('\nPlot saved as evolve.png') | |
| def plot_results_overlay(start=0, stop=0): # from utils.general import *; plot_results_overlay() | |
| # Plot training 'results*.txt', overlaying train and val losses | |
| s = ['train', 'train', 'train', 'Precision', '[email protected]', 'val', 'val', 'val', 'Recall', '[email protected]:0.95'] # legends | |
| t = ['Box', 'Objectness', 'Classification', 'P-R', 'mAP-F1'] # titles | |
| for f in sorted(glob.glob('results*.txt') + glob.glob('../../Downloads/results*.txt')): | |
| results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T | |
| n = results.shape[1] # number of rows | |
| x = range(start, min(stop, n) if stop else n) | |
| fig, ax = plt.subplots(1, 5, figsize=(14, 3.5), tight_layout=True) | |
| ax = ax.ravel() | |
| for i in range(5): | |
| for j in [i, i + 5]: | |
| y = results[j, x] | |
| ax[i].plot(x, y, marker='.', label=s[j]) | |
| # y_smooth = butter_lowpass_filtfilt(y) | |
| # ax[i].plot(x, np.gradient(y_smooth), marker='.', label=s[j]) | |
| ax[i].set_title(t[i]) | |
| ax[i].legend() | |
| ax[i].set_ylabel(f) if i == 0 else None # add filename | |
| fig.savefig(f.replace('.txt', '.png'), dpi=200) | |
| def plot_results(start=0, stop=0, bucket='', id=(), labels=(), save_dir=''): | |
| # from utils.general import *; plot_results(save_dir='runs/train/exp0') | |
| # Plot training 'results*.txt' | |
| fig, ax = plt.subplots(2, 5, figsize=(12, 6)) | |
| ax = ax.ravel() | |
| s = ['Box', 'Objectness', 'Classification', 'Precision', 'Recall', | |
| 'val Box', 'val Objectness', 'val Classification', '[email protected]', '[email protected]:0.95'] | |
| if bucket: | |
| # os.system('rm -rf storage.googleapis.com') | |
| # files = ['https://storage.googleapis.com/%s/results%g.txt' % (bucket, x) for x in id] | |
| files = ['%g.txt' % x for x in id] | |
| c = ('gsutil cp ' + '%s ' * len(files) + '.') % tuple('gs://%s/%g.txt' % (bucket, x) for x in id) | |
| os.system(c) | |
| else: | |
| files = glob.glob(str(Path(save_dir) / '*.txt')) + glob.glob('../../Downloads/results*.txt') | |
| assert len(files), 'No results.txt files found in %s, nothing to plot.' % os.path.abspath(save_dir) | |
| for fi, f in enumerate(files): | |
| try: | |
| results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T | |
| n = results.shape[1] # number of rows | |
| x = range(start, min(stop, n) if stop else n) | |
| for i in range(10): | |
| y = results[i, x] | |
| if i in [0, 1, 2, 5, 6, 7]: | |
| y[y == 0] = np.nan # don't show zero loss values | |
| # y /= y[0] # normalize | |
| label = labels[fi] if len(labels) else Path(f).stem | |
| ax[i].plot(x, y, marker='.', label=label, linewidth=1, markersize=6) | |
| ax[i].set_title(s[i]) | |
| # if i in [5, 6, 7]: # share train and val loss y axes | |
| # ax[i].get_shared_y_axes().join(ax[i], ax[i - 5]) | |
| except Exception as e: | |
| print('Warning: Plotting error for %s; %s' % (f, e)) | |
| fig.tight_layout() | |
| ax[1].legend() | |
| fig.savefig(Path(save_dir) / 'results.png', dpi=200) | |