Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2021 The Deeplab2 Authors. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """Tests for test_utils.""" | |
| import numpy as np | |
| import tensorflow as tf | |
| from deeplab2.evaluation import test_utils | |
| class TestUtilsTest(tf.test.TestCase): | |
| def test_read_test_image(self): | |
| image_array = test_utils.read_test_image('team_pred_class.png') | |
| self.assertSequenceEqual(image_array.shape, (231, 345, 4)) | |
| def test_reads_segmentation_with_color_map(self): | |
| rgb_to_semantic_label = {(0, 0, 0): 0, (0, 0, 255): 1, (255, 0, 0): 23} | |
| labels = test_utils.read_segmentation_with_rgb_color_map( | |
| 'team_pred_class.png', rgb_to_semantic_label) | |
| input_image = test_utils.read_test_image('team_pred_class.png') | |
| np.testing.assert_array_equal( | |
| labels == 0, | |
| np.logical_and(input_image[:, :, 0] == 0, input_image[:, :, 2] == 0)) | |
| np.testing.assert_array_equal(labels == 1, input_image[:, :, 2] == 255) | |
| np.testing.assert_array_equal(labels == 23, input_image[:, :, 0] == 255) | |
| def test_reads_gt_segmentation(self): | |
| instance_label_to_semantic_label = { | |
| 0: 0, | |
| 47: 1, | |
| 97: 1, | |
| 133: 1, | |
| 150: 1, | |
| 174: 1, | |
| 198: 23, | |
| 215: 1, | |
| 244: 1, | |
| 255: 1, | |
| } | |
| instances, classes = test_utils.panoptic_segmentation_with_class_map( | |
| 'team_gt_instance.png', instance_label_to_semantic_label) | |
| expected_label_shape = (231, 345) | |
| self.assertSequenceEqual(instances.shape, expected_label_shape) | |
| self.assertSequenceEqual(classes.shape, expected_label_shape) | |
| np.testing.assert_array_equal(instances == 0, classes == 0) | |
| np.testing.assert_array_equal(instances == 198, classes == 23) | |
| np.testing.assert_array_equal( | |
| np.logical_and(instances != 0, instances != 198), classes == 1) | |
| if __name__ == '__main__': | |
| tf.test.main() | |