Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2021 The Deeplab2 Authors. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """Implementation of the Panoptic Quality metric. | |
| Panoptic Quality is an instance-based metric for evaluating the task of | |
| image parsing, aka panoptic segmentation. | |
| Please see the paper for details: | |
| "Panoptic Segmentation", Alexander Kirillov, Kaiming He, Ross Girshick, | |
| Carsten Rother and Piotr Dollar. arXiv:1801.00868, 2018. | |
| """ | |
| from typing import Any, List, Mapping, Optional, Tuple | |
| import numpy as np | |
| import tensorflow as tf | |
| def _ids_to_counts(id_array: np.ndarray) -> Mapping[int, int]: | |
| """Given a numpy array, a mapping from each unique entry to its count.""" | |
| ids, counts = np.unique(id_array, return_counts=True) | |
| return dict(zip(ids, counts)) | |
| class PanopticQuality(tf.keras.metrics.Metric): | |
| """Metric class for Panoptic Quality. | |
| "Panoptic Segmentation" by Alexander Kirillov, Kaiming He, Ross Girshick, | |
| Carsten Rother, Piotr Dollar. | |
| https://arxiv.org/abs/1801.00868 | |
| Stand-alone usage: | |
| pq_obj = panoptic_quality.PanopticQuality(num_classes, | |
| max_instances_per_category, ignored_label) | |
| pq_obj.update_state(y_true_1, y_pred_1) | |
| pq_obj.update_state(y_true_2, y_pred_2) | |
| ... | |
| result = pq_obj.result().numpy() | |
| """ | |
| def __init__(self, | |
| num_classes: int, | |
| ignored_label: int, | |
| max_instances_per_category: int, | |
| offset: int, | |
| name: str = 'panoptic_quality', | |
| **kwargs): | |
| """Initialization of the PanopticQuality metric. | |
| Args: | |
| num_classes: Number of classes in the dataset as an integer. | |
| ignored_label: The class id to be ignored in evaluation as an integer or | |
| integer tensor. | |
| max_instances_per_category: The maximum number of instances for each class | |
| as an integer or integer tensor. | |
| offset: The maximum number of unique labels as an integer or integer | |
| tensor. | |
| name: An optional variable_scope name. (default: 'panoptic_quality') | |
| **kwargs: The keyword arguments that are passed on to `fn`. | |
| """ | |
| super(PanopticQuality, self).__init__(name=name, **kwargs) | |
| self.num_classes = num_classes | |
| self.ignored_label = ignored_label | |
| self.max_instances_per_category = max_instances_per_category | |
| self.total_iou = self.add_weight( | |
| 'total_iou', shape=(num_classes,), initializer=tf.zeros_initializer) | |
| self.total_tp = self.add_weight( | |
| 'total_tp', shape=(num_classes,), initializer=tf.zeros_initializer) | |
| self.total_fn = self.add_weight( | |
| 'total_fn', shape=(num_classes,), initializer=tf.zeros_initializer) | |
| self.total_fp = self.add_weight( | |
| 'total_fp', shape=(num_classes,), initializer=tf.zeros_initializer) | |
| self.offset = offset | |
| def compare_and_accumulate( | |
| self, gt_panoptic_label: tf.Tensor, pred_panoptic_label: tf.Tensor | |
| ) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]: | |
| """Compares predicted segmentation with groundtruth, accumulates its metric. | |
| It is not assumed that instance ids are unique across different categories. | |
| See for example combine_semantic_and_instance_predictions.py in official | |
| PanopticAPI evaluation code for issues to consider when fusing category | |
| and instance labels. | |
| Instances ids of the ignored category have the meaning that id 0 is "void" | |
| and remaining ones are crowd instances. | |
| Args: | |
| gt_panoptic_label: A tensor that combines label array from categories and | |
| instances for ground truth. | |
| pred_panoptic_label: A tensor that combines label array from categories | |
| and instances for the prediction. | |
| Returns: | |
| The value of the metrics (iou, tp, fn, fp) over all comparisons, as a | |
| float scalar. | |
| """ | |
| iou_per_class = np.zeros(self.num_classes, dtype=np.float64) | |
| tp_per_class = np.zeros(self.num_classes, dtype=np.float64) | |
| fn_per_class = np.zeros(self.num_classes, dtype=np.float64) | |
| fp_per_class = np.zeros(self.num_classes, dtype=np.float64) | |
| # Pre-calculate areas for all groundtruth and predicted segments. | |
| gt_segment_areas = _ids_to_counts(gt_panoptic_label.numpy()) | |
| pred_segment_areas = _ids_to_counts(pred_panoptic_label.numpy()) | |
| # We assume the ignored segment has instance id = 0. | |
| ignored_panoptic_id = self.ignored_label * self.max_instances_per_category | |
| # Next, combine the groundtruth and predicted labels. Dividing up the pixels | |
| # based on which groundtruth segment and which predicted segment they belong | |
| # to, this will assign a different 64-bit integer label to each choice | |
| # of (groundtruth segment, predicted segment), encoded as | |
| # gt_panoptic_label * offset + pred_panoptic_label. | |
| intersection_id_array = tf.cast(gt_panoptic_label, | |
| tf.int64) * self.offset + tf.cast( | |
| pred_panoptic_label, tf.int64) | |
| # For every combination of (groundtruth segment, predicted segment) with a | |
| # non-empty intersection, this counts the number of pixels in that | |
| # intersection. | |
| intersection_areas = _ids_to_counts(intersection_id_array.numpy()) | |
| # Compute overall ignored overlap. | |
| def prediction_ignored_overlap(pred_panoptic_label): | |
| intersection_id = ignored_panoptic_id * self.offset + pred_panoptic_label | |
| return intersection_areas.get(intersection_id, 0) | |
| # Sets that are populated with which segments groundtruth/predicted segments | |
| # have been matched with overlapping predicted/groundtruth segments | |
| # respectively. | |
| gt_matched = set() | |
| pred_matched = set() | |
| # Calculate IoU per pair of intersecting segments of the same category. | |
| for intersection_id, intersection_area in intersection_areas.items(): | |
| gt_panoptic_label = intersection_id // self.offset | |
| pred_panoptic_label = intersection_id % self.offset | |
| gt_category = gt_panoptic_label // self.max_instances_per_category | |
| pred_category = pred_panoptic_label // self.max_instances_per_category | |
| if gt_category != pred_category: | |
| continue | |
| if pred_category == self.ignored_label: | |
| continue | |
| # Union between the groundtruth and predicted segments being compared does | |
| # not include the portion of the predicted segment that consists of | |
| # groundtruth "void" pixels. | |
| union = ( | |
| gt_segment_areas[gt_panoptic_label] + | |
| pred_segment_areas[pred_panoptic_label] - intersection_area - | |
| prediction_ignored_overlap(pred_panoptic_label)) | |
| iou = intersection_area / union | |
| if iou > 0.5: | |
| tp_per_class[gt_category] += 1 | |
| iou_per_class[gt_category] += iou | |
| gt_matched.add(gt_panoptic_label) | |
| pred_matched.add(pred_panoptic_label) | |
| # Count false negatives for each category. | |
| for gt_panoptic_label in gt_segment_areas: | |
| if gt_panoptic_label in gt_matched: | |
| continue | |
| category = gt_panoptic_label // self.max_instances_per_category | |
| # Failing to detect a void segment is not a false negative. | |
| if category == self.ignored_label: | |
| continue | |
| fn_per_class[category] += 1 | |
| # Count false positives for each category. | |
| for pred_panoptic_label in pred_segment_areas: | |
| if pred_panoptic_label in pred_matched: | |
| continue | |
| # A false positive is not penalized if is mostly ignored in the | |
| # groundtruth. | |
| if (prediction_ignored_overlap(pred_panoptic_label) / | |
| pred_segment_areas[pred_panoptic_label]) > 0.5: | |
| continue | |
| category = pred_panoptic_label // self.max_instances_per_category | |
| if category == self.ignored_label: | |
| continue | |
| fp_per_class[category] += 1 | |
| return iou_per_class, tp_per_class, fn_per_class, fp_per_class | |
| def update_state( | |
| self, | |
| y_true: tf.Tensor, | |
| y_pred: tf.Tensor, | |
| sample_weight: Optional[tf.Tensor] = None) -> List[tf.Operation]: | |
| """Accumulates the panoptic quality statistics. | |
| Args: | |
| y_true: The ground truth panoptic label map (defined as semantic_map * | |
| max_instances_per_category + instance_map). | |
| y_pred: The predicted panoptic label map (defined as semantic_map * | |
| max_instances_per_category + instance_map). | |
| sample_weight: Optional weighting of each example. Defaults to 1. Can be a | |
| `Tensor` whose rank is either 0, or the same rank as `y_true`, and must | |
| be broadcastable to `y_true`. | |
| Returns: | |
| Update ops for iou, tp, fn, fp. | |
| """ | |
| result = self.compare_and_accumulate(y_true, y_pred) | |
| iou, tp, fn, fp = tuple(result) | |
| update_iou_op = self.total_iou.assign_add(iou) | |
| update_tp_op = self.total_tp.assign_add(tp) | |
| update_fn_op = self.total_fn.assign_add(fn) | |
| update_fp_op = self.total_fp.assign_add(fp) | |
| return [update_iou_op, update_tp_op, update_fn_op, update_fp_op] | |
| def result(self) -> tf.Tensor: | |
| """Computes the panoptic quality.""" | |
| sq = tf.math.divide_no_nan(self.total_iou, self.total_tp) | |
| rq = tf.math.divide_no_nan( | |
| self.total_tp, | |
| self.total_tp + 0.5 * self.total_fn + 0.5 * self.total_fp) | |
| pq = tf.math.multiply(sq, rq) | |
| # Find the valid classes that will be used for evaluation. We will | |
| # ignore classes which have (tp + fn + fp) equal to 0. | |
| # The "ignore" label will be included in this based on logic that skips | |
| # counting those instances/regions. | |
| valid_classes = tf.not_equal(self.total_tp + self.total_fn + self.total_fp, | |
| 0) | |
| # Compute averages over classes. | |
| qualities = tf.stack( | |
| [pq, sq, rq, self.total_tp, self.total_fn, self.total_fp], axis=0) | |
| summarized_qualities = tf.math.reduce_mean( | |
| tf.boolean_mask(qualities, valid_classes, axis=1), axis=1) | |
| return summarized_qualities | |
| def reset_states(self) -> None: | |
| """See base class.""" | |
| tf.keras.backend.set_value(self.total_iou, np.zeros(self.num_classes)) | |
| tf.keras.backend.set_value(self.total_tp, np.zeros(self.num_classes)) | |
| tf.keras.backend.set_value(self.total_fn, np.zeros(self.num_classes)) | |
| tf.keras.backend.set_value(self.total_fp, np.zeros(self.num_classes)) | |
| def get_config(self) -> Mapping[str, Any]: | |
| """See base class.""" | |
| config = { | |
| 'num_classes': self.num_classes, | |
| 'ignored_label': self.ignored_label, | |
| 'max_instances_per_category': self.max_instances_per_category, | |
| 'offset': self.offset, | |
| } | |
| base_config = super(PanopticQuality, self).get_config() | |
| return dict(list(base_config.items()) + list(config.items())) | |