Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2021 The Deeplab2 Authors. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """Tests for data_utils.""" | |
| import io | |
| import numpy as np | |
| from PIL import Image | |
| import tensorflow as tf | |
| from deeplab2.data import data_utils | |
| def _encode_png_image(image): | |
| """Helper method to encode input image in PNG format.""" | |
| buffer = io.BytesIO() | |
| Image.fromarray(image).save(buffer, format='png') | |
| return buffer.getvalue() | |
| class DataUtilsTest(tf.test.TestCase): | |
| def _create_test_image(self, height, width): | |
| rng = np.random.RandomState(319281498) | |
| return rng.randint(0, 255, size=(height, width, 3), dtype=np.uint8) | |
| def test_encode_and_decode(self): | |
| """Checks decode created tf.Example for semantic segmentation.""" | |
| test_image_height = 20 | |
| test_image_width = 15 | |
| filename = 'dummy' | |
| image = self._create_test_image(test_image_height, test_image_width) | |
| # Take the last channel as dummy label. | |
| label = image[..., 0] | |
| example = data_utils.create_tfexample( | |
| image_data=_encode_png_image(image), | |
| image_format='png', filename=filename, | |
| label_data=_encode_png_image(label), label_format='png') | |
| # Parse created example, expect getting identical results. | |
| parser = data_utils.SegmentationDecoder(is_panoptic_dataset=False) | |
| parsed_tensors = parser(example.SerializeToString()) | |
| self.assertIn('image', parsed_tensors) | |
| self.assertIn('image_name', parsed_tensors) | |
| self.assertIn('label', parsed_tensors) | |
| self.assertEqual(filename, parsed_tensors['image_name']) | |
| np.testing.assert_array_equal(image, parsed_tensors['image'].numpy()) | |
| # Decoded label is a 3-D array with last dimension of 1. | |
| decoded_label = parsed_tensors['label'].numpy() | |
| np.testing.assert_array_equal(label, decoded_label[..., 0]) | |
| def test_encode_and_decode_panoptic(self): | |
| test_image_height = 31 | |
| test_image_width = 17 | |
| filename = 'dummy' | |
| image = self._create_test_image(test_image_height, test_image_width) | |
| # Create dummy panoptic label in np.int32 dtype. | |
| label = np.dot(image.astype(np.int32), [1, 256, 256 * 256]).astype(np.int32) | |
| example = data_utils.create_tfexample( | |
| image_data=_encode_png_image(image), | |
| image_format='png', filename=filename, | |
| label_data=label.tostring(), label_format='raw') | |
| parser = data_utils.SegmentationDecoder(is_panoptic_dataset=True) | |
| parsed_tensors = parser(example.SerializeToString()) | |
| self.assertIn('image', parsed_tensors) | |
| self.assertIn('image_name', parsed_tensors) | |
| self.assertIn('label', parsed_tensors) | |
| self.assertEqual(filename, parsed_tensors['image_name']) | |
| np.testing.assert_array_equal(image, parsed_tensors['image'].numpy()) | |
| # Decoded label is a 3-D array with last dimension of 1. | |
| decoded_label = parsed_tensors['label'].numpy() | |
| np.testing.assert_array_equal(label, decoded_label[..., 0]) | |
| if __name__ == '__main__': | |
| tf.test.main() | |