Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2021 The Deeplab2 Authors. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| r"""Converts STEP (KITTI-STEP or MOTChallenge-STEP) data to sharded TFRecord file format with tf.train.Example protos. | |
| The expected directory structure of the STEP dataset should be as follows: | |
| + {KITTI | MOTChallenge}-STEP | |
| + images | |
| + train | |
| + sequence_id | |
| - *.{png|jpg} | |
| ... | |
| + val | |
| + test | |
| + panoptic_maps | |
| + train | |
| + sequence_id | |
| - *.png | |
| ... | |
| + val | |
| The ground-truth panoptic map is encoded as the following in PNG format: | |
| R: semantic_id | |
| G: instance_id // 256 | |
| B: instance % 256 | |
| See ./utils/create_step_panoptic_maps.py for more details of how we create the | |
| panoptic map by merging semantic and instance maps. | |
| The output Example proto contains the following fields: | |
| image/encoded: encoded image content. | |
| image/filename: image filename. | |
| image/format: image file format. | |
| image/height: image height. | |
| image/width: image width. | |
| image/channels: image channels. | |
| image/segmentation/class/encoded: encoded panoptic segmentation content. | |
| image/segmentation/class/format: segmentation encoding format. | |
| video/sequence_id: sequence ID of the frame. | |
| video/frame_id: ID of the frame of the video sequence. | |
| The output panoptic segmentation map stored in the Example will be the raw bytes | |
| of an int32 panoptic map, where each pixel is assigned to a panoptic ID: | |
| panoptic ID = semantic ID * label divisor (1000) + instance ID | |
| where semantic ID will be the same with `category_id` (use TrainId) for | |
| each segment, and ignore label for pixels not belong to any segment. | |
| The instance ID will be 0 for pixels belonging to | |
| 1) `stuff` class | |
| 2) `thing` class with `iscrowd` label | |
| 3) pixels with ignore label | |
| and [1, label divisor) otherwise. | |
| Example to run the scipt: | |
| python deeplab2/data/build_step_data.py \ | |
| --step_root=${STEP_ROOT} \ | |
| --output_dir=${OUTPUT_DIR} | |
| """ | |
| import math | |
| import os | |
| from typing import Iterator, Sequence, Tuple, Optional | |
| from absl import app | |
| from absl import flags | |
| from absl import logging | |
| import numpy as np | |
| from PIL import Image | |
| import tensorflow as tf | |
| from deeplab2.data import data_utils | |
| FLAGS = flags.FLAGS | |
| flags.DEFINE_string('step_root', None, 'STEP dataset root folder.') | |
| flags.DEFINE_string('output_dir', None, | |
| 'Path to save converted TFRecord of TensorFlow examples.') | |
| flags.DEFINE_bool( | |
| 'use_two_frames', False, 'Flag to separate between 1 frame ' | |
| 'per TFExample or 2 consecutive frames per TFExample.') | |
| _PANOPTIC_LABEL_FORMAT = 'raw' | |
| _NUM_SHARDS = 10 | |
| _IMAGE_FOLDER_NAME = 'images' | |
| _PANOPTIC_MAP_FOLDER_NAME = 'panoptic_maps' | |
| _LABEL_MAP_FORMAT = 'png' | |
| _INSTANCE_LABEL_DIVISOR = 1000 | |
| _ENCODED_INSTANCE_LABEL_DIVISOR = 256 | |
| _TF_RECORD_PATTERN = '%s-%05d-of-%05d.tfrecord' | |
| _FRAME_ID_PATTERN = '%06d' | |
| def _get_image_info_from_path(image_path: str) -> Tuple[str, str]: | |
| """Gets image info including sequence id and image id. | |
| Image path is in the format of '.../split/sequence_id/image_id.png', | |
| where `sequence_id` refers to the id of the video sequence, and `image_id` is | |
| the id of the image in the video sequence. | |
| Args: | |
| image_path: Absolute path of the image. | |
| Returns: | |
| sequence_id, and image_id as strings. | |
| """ | |
| sequence_id = image_path.split('/')[-2] | |
| image_id = os.path.splitext(os.path.basename(image_path))[0] | |
| return sequence_id, image_id | |
| def _get_images_per_shard(step_root: str, dataset_split: str, | |
| sharded_by_sequence: bool) -> Iterator[Sequence[str]]: | |
| """Gets files for the specified data type and dataset split. | |
| Args: | |
| step_root: String, Path to STEP dataset root folder. | |
| dataset_split: String, dataset split ('train', 'val', 'test') | |
| sharded_by_sequence: Whether the images should be sharded by sequence or | |
| even split. | |
| Yields: | |
| A list of sorted file lists. Each inner list corresponds to one shard and is | |
| a list of files for this shard. | |
| """ | |
| search_files = os.path.join(step_root, _IMAGE_FOLDER_NAME, dataset_split, '*', | |
| '*') | |
| filenames = sorted(tf.io.gfile.glob(search_files)) | |
| num_per_even_shard = int(math.ceil(len(filenames) / _NUM_SHARDS)) | |
| sequence_ids = [os.path.basename(os.path.dirname(name)) for name in filenames] | |
| images_per_shard = [] | |
| for i, name in enumerate(filenames): | |
| images_per_shard.append(name) | |
| shard_data = (i == len(filenames) - 1) | |
| # Sharded by sequence id. | |
| shard_data = shard_data or (sharded_by_sequence and | |
| sequence_ids[i + 1] != sequence_ids[i]) | |
| # Sharded evenly. | |
| shard_data = shard_data or (not sharded_by_sequence and | |
| len(images_per_shard) == num_per_even_shard) | |
| if shard_data: | |
| yield images_per_shard | |
| images_per_shard = [] | |
| def _decode_panoptic_map(panoptic_map_path: str) -> Optional[str]: | |
| """Decodes the panoptic map from encoded image file. | |
| Args: | |
| panoptic_map_path: Path to the panoptic map image file. | |
| Returns: | |
| Panoptic map as an encoded int32 numpy array bytes or None if not existing. | |
| """ | |
| if not tf.io.gfile.exists(panoptic_map_path): | |
| return None | |
| with tf.io.gfile.GFile(panoptic_map_path, 'rb') as f: | |
| panoptic_map = np.array(Image.open(f)).astype(np.int32) | |
| semantic_map = panoptic_map[:, :, 0] | |
| instance_map = ( | |
| panoptic_map[:, :, 1] * _ENCODED_INSTANCE_LABEL_DIVISOR + | |
| panoptic_map[:, :, 2]) | |
| panoptic_map = semantic_map * _INSTANCE_LABEL_DIVISOR + instance_map | |
| return panoptic_map.tobytes() | |
| def _get_previous_frame_path(image_path: str) -> str: | |
| """Gets previous frame path. If not exists, duplicate it with image_path.""" | |
| frame_id, frame_ext = os.path.splitext(os.path.basename(image_path)) | |
| folder_dir = os.path.dirname(image_path) | |
| prev_frame_id = _FRAME_ID_PATTERN % (int(frame_id) - 1) | |
| prev_image_path = os.path.join(folder_dir, prev_frame_id + frame_ext) | |
| # If first frame, duplicates it. | |
| if not tf.io.gfile.exists(prev_image_path): | |
| tf.compat.v1.logging.warn( | |
| 'Could not find previous frame %s of frame %d, duplicate the previous ' | |
| 'frame with the current frame.', prev_image_path, int(frame_id)) | |
| prev_image_path = image_path | |
| return prev_image_path | |
| def _create_panoptic_tfexample(image_path: str, | |
| panoptic_map_path: str, | |
| use_two_frames: bool, | |
| is_testing: bool = False) -> tf.train.Example: | |
| """Creates a TF example for each image. | |
| Args: | |
| image_path: Path to the image. | |
| panoptic_map_path: Path to the panoptic map (as an image file). | |
| use_two_frames: Whether to encode consecutive two frames in the Example. | |
| is_testing: Whether it is testing data. If so, skip adding label data. | |
| Returns: | |
| TF example proto. | |
| """ | |
| with tf.io.gfile.GFile(image_path, 'rb') as f: | |
| image_data = f.read() | |
| label_data = None | |
| if not is_testing: | |
| label_data = _decode_panoptic_map(panoptic_map_path) | |
| image_name = os.path.basename(image_path) | |
| image_format = image_name.split('.')[1].lower() | |
| sequence_id, frame_id = _get_image_info_from_path(image_path) | |
| prev_image_data = None | |
| prev_label_data = None | |
| if use_two_frames: | |
| # Previous image. | |
| prev_image_path = _get_previous_frame_path(image_path) | |
| with tf.io.gfile.GFile(prev_image_path, 'rb') as f: | |
| prev_image_data = f.read() | |
| # Previous panoptic map. | |
| if not is_testing: | |
| prev_panoptic_map_path = _get_previous_frame_path(panoptic_map_path) | |
| prev_label_data = _decode_panoptic_map(prev_panoptic_map_path) | |
| return data_utils.create_video_tfexample( | |
| image_data, | |
| image_format, | |
| image_name, | |
| label_format=_PANOPTIC_LABEL_FORMAT, | |
| sequence_id=sequence_id, | |
| image_id=frame_id, | |
| label_data=label_data, | |
| prev_image_data=prev_image_data, | |
| prev_label_data=prev_label_data) | |
| def _convert_dataset(step_root: str, | |
| dataset_split: str, | |
| output_dir: str, | |
| use_two_frames: bool = False): | |
| """Converts the specified dataset split to TFRecord format. | |
| Args: | |
| step_root: String, Path to STEP dataset root folder. | |
| dataset_split: String, the dataset split (e.g., train, val). | |
| output_dir: String, directory to write output TFRecords to. | |
| use_two_frames: Whether to encode consecutive two frames in the Example. | |
| """ | |
| # For val and test set, if we run with use_two_frames, we should create a | |
| # sorted tfrecord per sequence. | |
| create_tfrecord_per_sequence = ('train' | |
| not in dataset_split) and use_two_frames | |
| is_testing = 'test' in dataset_split | |
| image_files_per_shard = list( | |
| _get_images_per_shard(step_root, dataset_split, | |
| sharded_by_sequence=create_tfrecord_per_sequence)) | |
| num_shards = len(image_files_per_shard) | |
| for shard_id, image_list in enumerate(image_files_per_shard): | |
| shard_filename = _TF_RECORD_PATTERN % (dataset_split, shard_id, num_shards) | |
| output_filename = os.path.join(output_dir, shard_filename) | |
| with tf.io.TFRecordWriter(output_filename) as tfrecord_writer: | |
| for image_path in image_list: | |
| sequence_id, image_id = _get_image_info_from_path(image_path) | |
| panoptic_map_path = os.path.join( | |
| step_root, _PANOPTIC_MAP_FOLDER_NAME, dataset_split, sequence_id, | |
| '%s.%s' % (image_id, _LABEL_MAP_FORMAT)) | |
| example = _create_panoptic_tfexample(image_path, panoptic_map_path, | |
| use_two_frames, is_testing) | |
| tfrecord_writer.write(example.SerializeToString()) | |
| def main(argv: Sequence[str]) -> None: | |
| if len(argv) > 1: | |
| raise app.UsageError('Too many command-line arguments.') | |
| tf.io.gfile.makedirs(FLAGS.output_dir) | |
| for dataset_split in ('train', 'val', 'test'): | |
| logging.info('Starts to processing STEP dataset split %s.', dataset_split) | |
| _convert_dataset(FLAGS.step_root, dataset_split, FLAGS.output_dir, | |
| FLAGS.use_two_frames) | |
| if __name__ == '__main__': | |
| app.run(main) | |