Rustamshry commited on
Commit
fab4b6f
·
verified ·
1 Parent(s): 37dc189

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +99 -65
app.py CHANGED
@@ -1,70 +1,104 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
-
5
- def respond(
6
- message,
7
- history: list[dict[str, str]],
8
- system_message,
9
- max_tokens,
10
- temperature,
11
- top_p,
12
- hf_token: gr.OAuthToken,
13
- ):
14
- """
15
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
16
- """
17
- client = InferenceClient(token=hf_token.token, model="openai/gpt-oss-20b")
18
-
19
- messages = [{"role": "system", "content": system_message}]
20
-
21
- messages.extend(history)
22
-
23
- messages.append({"role": "user", "content": message})
24
-
25
- response = ""
26
-
27
- for message in client.chat_completion(
28
- messages,
29
- max_tokens=max_tokens,
30
- stream=True,
31
- temperature=temperature,
32
- top_p=top_p,
33
- ):
34
- choices = message.choices
35
- token = ""
36
- if len(choices) and choices[0].delta.content:
37
- token = choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- chatbot = gr.ChatInterface(
47
- respond,
48
- type="messages",
49
- additional_inputs=[
50
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
51
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
52
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
53
- gr.Slider(
54
- minimum=0.1,
55
- maximum=1.0,
56
- value=0.95,
57
- step=0.05,
58
- label="Top-p (nucleus sampling)",
59
- ),
60
- ],
61
  )
62
 
63
- with gr.Blocks() as demo:
64
- with gr.Sidebar():
65
- gr.LoginButton()
66
- chatbot.render()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67
 
 
 
 
 
 
68
 
69
- if __name__ == "__main__":
70
- demo.launch()
 
1
  import gradio as gr
2
+ from transformers import AutoTokenizer, AutoModelForCausalLM
3
+ from peft import PeftModel
4
+ import torch
5
+
6
+ # --- Load tokenizer and model for CPU ---
7
+ tokenizer = AutoTokenizer.from_pretrained("unsloth/Qwen3-1.7B")
8
+
9
+ base_model = AutoModelForCausalLM.from_pretrained(
10
+ "unsloth/Qwen3-1.7B",
11
+ torch_dtype=torch.float32,
12
+ device_map={"": "cpu"},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
  )
14
 
15
+ model = PeftModel.from_pretrained(base_model, "khazarai/Nizami-1.7B").to("cpu")
16
+
17
+
18
+ # --- Chatbot logic ---
19
+ def generate_response(user_input, chat_history):
20
+ if not user_input.strip():
21
+ return chat_history, chat_history
22
+
23
+ chat_history.append({"role": "user", "content": user_input})
24
+
25
+ text = tokenizer.apply_chat_template(
26
+ chat_history,
27
+ tokenize=False,
28
+ add_generation_prompt=True,
29
+ enable_thinking=False,
30
+ )
31
+
32
+ inputs = tokenizer(text, return_tensors="pt").to("cpu")
33
+
34
+ output_tokens = model.generate(
35
+ **inputs,
36
+ max_new_tokens=1024,
37
+ temperature=0.7,
38
+ top_p=0.8,
39
+ top_k=20,
40
+ do_sample=True
41
+ )
42
+
43
+ response = tokenizer.decode(output_tokens[0], skip_special_tokens=True)
44
+ response = response.split(user_input)[-1].strip()
45
+
46
+ chat_history.append({"role": "assistant", "content": response})
47
+
48
+ gr_chat_history = [
49
+ (m["content"], chat_history[i + 1]["content"])
50
+ for i, m in enumerate(chat_history[:-1])
51
+ if m["role"] == "user"
52
+ ]
53
+
54
+ return gr_chat_history, chat_history
55
+
56
+
57
+ # --- UI Design ---
58
+ with gr.Blocks(theme=gr.themes.Soft(primary_hue="yellow", secondary_hue="slate")) as demo:
59
+ gr.HTML("""
60
+ <div style="text-align: center; margin-bottom: 20px;">
61
+ <h1 style="font-family: 'Inter', sans-serif; font-weight: 800; color: #FACC15; font-size: 2.2em;">
62
+ 📚 Nizami-1.7B
63
+ </h1>
64
+ <p style="color: #FDE047; font-size: 1.05em; margin-top: -10px;">
65
+ Academic style comprehension and reasoning in Azerbaijani.
66
+ </p>
67
+ </div>
68
+ """)
69
+
70
+ with gr.Row():
71
+ with gr.Column(scale=6):
72
+ chatbot = gr.Chatbot(
73
+ label="Academic-style Chat",
74
+ height=600,
75
+ bubble_full_width=True,
76
+ show_copy_button=True,
77
+ avatar_images=(
78
+ "https://cdn-icons-png.flaticon.com/512/1077/1077012.png", # user icon
79
+ "https://cdn-icons-png.flaticon.com/512/4140/4140048.png", # bot icon
80
+ ),
81
+ )
82
+ user_input = gr.Textbox(
83
+ placeholder="Ask me...",
84
+ label="💬 Your question",
85
+ lines=3,
86
+ autofocus=True,
87
+ )
88
+ with gr.Row():
89
+ send_btn = gr.Button("🚀 Send", variant="primary")
90
+ clear_btn = gr.Button("🧹 Clear Chat")
91
+
92
+ state = gr.State([])
93
+
94
+ send_btn.click(generate_response, [user_input, state], [chatbot, state])
95
+ user_input.submit(generate_response, [user_input, state], [chatbot, state])
96
+ clear_btn.click(lambda: ([], []), None, [chatbot, state])
97
 
98
+ gr.HTML("""
99
+ <div style="text-align: center; margin-top: 25px; color: #6B7280; font-size: 0.9em;">
100
+ Powered by <b>Qwen3-1.7B + Nizami-1.7B</b> | Built with ❤️ using Gradio
101
+ </div>
102
+ """)
103
 
104
+ demo.launch(share=True)