Spaces:
Build error
Build error
Commit
·
09d9587
1
Parent(s):
6b31279
small fixes
Browse files
app.py
CHANGED
|
@@ -16,6 +16,9 @@
|
|
| 16 |
# See the License for the specific language governing permissions and
|
| 17 |
# limitations under the License.
|
| 18 |
|
|
|
|
|
|
|
|
|
|
| 19 |
import os
|
| 20 |
import time
|
| 21 |
from datetime import datetime
|
|
@@ -23,9 +26,16 @@ from datetime import datetime
|
|
| 23 |
import gradio as gr
|
| 24 |
import torchaudio
|
| 25 |
|
| 26 |
-
from model import
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
-
models = {
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
|
| 31 |
def convert_to_wav(in_filename: str) -> str:
|
|
@@ -39,8 +49,9 @@ def convert_to_wav(in_filename: str) -> str:
|
|
| 39 |
demo = gr.Blocks()
|
| 40 |
|
| 41 |
|
| 42 |
-
def process(in_filename: str) -> str:
|
| 43 |
print("in_filename", in_filename)
|
|
|
|
| 44 |
filename = convert_to_wav(in_filename)
|
| 45 |
|
| 46 |
now = datetime.now()
|
|
@@ -63,7 +74,7 @@ def process(in_filename: str) -> str:
|
|
| 63 |
)
|
| 64 |
wave = wave[0] # use only the first channel.
|
| 65 |
|
| 66 |
-
hyp = models[
|
| 67 |
|
| 68 |
date_time = now.strftime("%Y-%m-%d %H:%M:%S.%f")
|
| 69 |
end = time.time()
|
|
@@ -82,6 +93,8 @@ def process(in_filename: str) -> str:
|
|
| 82 |
|
| 83 |
with demo:
|
| 84 |
gr.Markdown("Upload audio from disk or record from microphone for recognition")
|
|
|
|
|
|
|
| 85 |
with gr.Tabs():
|
| 86 |
with gr.TabItem("Upload from disk"):
|
| 87 |
uploaded_file = gr.inputs.Audio(
|
|
@@ -110,12 +123,12 @@ with demo:
|
|
| 110 |
|
| 111 |
upload_button.click(
|
| 112 |
process,
|
| 113 |
-
inputs=uploaded_file,
|
| 114 |
outputs=uploaded_output,
|
| 115 |
)
|
| 116 |
record_button.click(
|
| 117 |
process,
|
| 118 |
-
inputs=microphone,
|
| 119 |
outputs=recorded_output,
|
| 120 |
)
|
| 121 |
|
|
|
|
| 16 |
# See the License for the specific language governing permissions and
|
| 17 |
# limitations under the License.
|
| 18 |
|
| 19 |
+
# References:
|
| 20 |
+
# https://gradio.app/docs/#dropdown
|
| 21 |
+
|
| 22 |
import os
|
| 23 |
import time
|
| 24 |
from datetime import datetime
|
|
|
|
| 26 |
import gradio as gr
|
| 27 |
import torchaudio
|
| 28 |
|
| 29 |
+
from model import (
|
| 30 |
+
get_gigaspeech_pre_trained_model,
|
| 31 |
+
sample_rate,
|
| 32 |
+
get_wenetspeech_pre_trained_model,
|
| 33 |
+
)
|
| 34 |
|
| 35 |
+
models = {
|
| 36 |
+
"Chinese": get_wenetspeech_pre_trained_model(),
|
| 37 |
+
"English": get_gigaspeech_pre_trained_model(),
|
| 38 |
+
}
|
| 39 |
|
| 40 |
|
| 41 |
def convert_to_wav(in_filename: str) -> str:
|
|
|
|
| 49 |
demo = gr.Blocks()
|
| 50 |
|
| 51 |
|
| 52 |
+
def process(in_filename: str, language: str) -> str:
|
| 53 |
print("in_filename", in_filename)
|
| 54 |
+
print("language", language)
|
| 55 |
filename = convert_to_wav(in_filename)
|
| 56 |
|
| 57 |
now = datetime.now()
|
|
|
|
| 74 |
)
|
| 75 |
wave = wave[0] # use only the first channel.
|
| 76 |
|
| 77 |
+
hyp = models[language].decode_waves([wave])[0]
|
| 78 |
|
| 79 |
date_time = now.strftime("%Y-%m-%d %H:%M:%S.%f")
|
| 80 |
end = time.time()
|
|
|
|
| 93 |
|
| 94 |
with demo:
|
| 95 |
gr.Markdown("Upload audio from disk or record from microphone for recognition")
|
| 96 |
+
languages = gr.inputs.Radio(label="Language", choices=list(models.keys()))
|
| 97 |
+
|
| 98 |
with gr.Tabs():
|
| 99 |
with gr.TabItem("Upload from disk"):
|
| 100 |
uploaded_file = gr.inputs.Audio(
|
|
|
|
| 123 |
|
| 124 |
upload_button.click(
|
| 125 |
process,
|
| 126 |
+
inputs=[uploaded_file, language],
|
| 127 |
outputs=uploaded_output,
|
| 128 |
)
|
| 129 |
record_button.click(
|
| 130 |
process,
|
| 131 |
+
inputs=[microphone, language],
|
| 132 |
outputs=recorded_output,
|
| 133 |
)
|
| 134 |
|
model.py
CHANGED
|
@@ -47,3 +47,28 @@ def get_gigaspeech_pre_trained_model():
|
|
| 47 |
sample_rate=sample_rate,
|
| 48 |
device="cpu",
|
| 49 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
sample_rate=sample_rate,
|
| 48 |
device="cpu",
|
| 49 |
)
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
@lru_cache(maxsize=1)
|
| 53 |
+
def get_wenetspeech_pre_trained_model():
|
| 54 |
+
nn_model_filename = hf_hub_download(
|
| 55 |
+
repo_id="luomingshuang/icefall_asr_wenetspeech_pruned_transducer_stateless2",
|
| 56 |
+
filename="cpu_jit_epoch_10_avg_2_torch_1.7.1.pt",
|
| 57 |
+
subfolder="exp",
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
token_filename = hf_hub_download(
|
| 61 |
+
repo_id="luomingshuang/icefall_asr_wenetspeech_pruned_transducer_stateless2",
|
| 62 |
+
filename="tokens.txt",
|
| 63 |
+
subfolder="data/lang_char",
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
return OfflineAsr(
|
| 67 |
+
nn_model_filename=nn_model_filename,
|
| 68 |
+
bpe_model_filename=None,
|
| 69 |
+
token_filename=token_filename,
|
| 70 |
+
decoding_method="greedy_search",
|
| 71 |
+
num_active_paths=4,
|
| 72 |
+
sample_rate=sample_rate,
|
| 73 |
+
device="cpu",
|
| 74 |
+
)
|