Spaces:
Build error
Build error
| # Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang) | |
| # | |
| # See LICENSE for clarification regarding multiple authors | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import os | |
| from functools import lru_cache | |
| from typing import Union | |
| import torch | |
| import torchaudio | |
| from huggingface_hub import hf_hub_download | |
| os.system( | |
| "cp -v /usr/local/lib/python3.8/site-packages/k2/lib/*.so //usr/local/lib/python3.8/site-packages/sherpa/lib/" | |
| ) | |
| os.system( | |
| "cp -v /home/user/.local/lib/python3.8/site-packages/k2/lib/*.so /home/user/.local/lib/python3.8/site-packages/sherpa/lib/" | |
| ) | |
| import k2 # noqa | |
| import sherpa | |
| import sherpa_onnx | |
| import numpy as np | |
| from typing import Tuple | |
| import wave | |
| sample_rate = 16000 | |
| def read_wave(wave_filename: str) -> Tuple[np.ndarray, int]: | |
| """ | |
| Args: | |
| wave_filename: | |
| Path to a wave file. It should be single channel and each sample should | |
| be 16-bit. Its sample rate does not need to be 16kHz. | |
| Returns: | |
| Return a tuple containing: | |
| - A 1-D array of dtype np.float32 containing the samples, which are | |
| normalized to the range [-1, 1]. | |
| - sample rate of the wave file | |
| """ | |
| with wave.open(wave_filename) as f: | |
| assert f.getnchannels() == 1, f.getnchannels() | |
| assert f.getsampwidth() == 2, f.getsampwidth() # it is in bytes | |
| num_samples = f.getnframes() | |
| samples = f.readframes(num_samples) | |
| samples_int16 = np.frombuffer(samples, dtype=np.int16) | |
| samples_float32 = samples_int16.astype(np.float32) | |
| samples_float32 = samples_float32 / 32768 | |
| return samples_float32, f.getframerate() | |
| def decode_offline_recognizer( | |
| recognizer: sherpa.OfflineRecognizer, | |
| filename: str, | |
| ) -> str: | |
| s = recognizer.create_stream() | |
| s.accept_wave_file(filename) | |
| recognizer.decode_stream(s) | |
| text = s.result.text.strip() | |
| # return text.lower() | |
| return text | |
| def decode_online_recognizer( | |
| recognizer: sherpa.OnlineRecognizer, | |
| filename: str, | |
| ) -> str: | |
| samples, actual_sample_rate = torchaudio.load(filename) | |
| assert sample_rate == actual_sample_rate, ( | |
| sample_rate, | |
| actual_sample_rate, | |
| ) | |
| samples = samples[0].contiguous() | |
| s = recognizer.create_stream() | |
| tail_padding = torch.zeros(int(sample_rate * 0.3), dtype=torch.float32) | |
| s.accept_waveform(sample_rate, samples) | |
| s.accept_waveform(sample_rate, tail_padding) | |
| s.input_finished() | |
| while recognizer.is_ready(s): | |
| recognizer.decode_stream(s) | |
| text = recognizer.get_result(s).text | |
| # return text.strip().lower() | |
| return text.strip() | |
| def decode_offline_recognizer_sherpa_onnx( | |
| recognizer: sherpa_onnx.OfflineRecognizer, | |
| filename: str, | |
| ) -> str: | |
| s = recognizer.create_stream() | |
| samples, sample_rate = read_wave(filename) | |
| s.accept_waveform(sample_rate, samples) | |
| recognizer.decode_stream(s) | |
| # return s.result.text.lower() | |
| return s.result.text | |
| def decode_online_recognizer_sherpa_onnx( | |
| recognizer: sherpa_onnx.OnlineRecognizer, | |
| filename: str, | |
| ) -> str: | |
| s = recognizer.create_stream() | |
| samples, sample_rate = read_wave(filename) | |
| s.accept_waveform(sample_rate, samples) | |
| tail_paddings = np.zeros(int(0.3 * sample_rate), dtype=np.float32) | |
| s.accept_waveform(sample_rate, tail_paddings) | |
| s.input_finished() | |
| while recognizer.is_ready(s): | |
| recognizer.decode_stream(s) | |
| # return recognizer.get_result(s).lower() | |
| return recognizer.get_result(s) | |
| def decode( | |
| recognizer: Union[ | |
| sherpa.OfflineRecognizer, | |
| sherpa.OnlineRecognizer, | |
| sherpa_onnx.OfflineRecognizer, | |
| sherpa_onnx.OnlineRecognizer, | |
| ], | |
| filename: str, | |
| ) -> str: | |
| if isinstance(recognizer, sherpa.OfflineRecognizer): | |
| return decode_offline_recognizer(recognizer, filename) | |
| elif isinstance(recognizer, sherpa.OnlineRecognizer): | |
| return decode_online_recognizer(recognizer, filename) | |
| elif isinstance(recognizer, sherpa_onnx.OfflineRecognizer): | |
| return decode_offline_recognizer_sherpa_onnx(recognizer, filename) | |
| elif isinstance(recognizer, sherpa_onnx.OnlineRecognizer): | |
| return decode_online_recognizer_sherpa_onnx(recognizer, filename) | |
| else: | |
| raise ValueError(f"Unknown recognizer type {type(recognizer)}") | |
| def get_pretrained_model( | |
| repo_id: str, | |
| decoding_method: str, | |
| num_active_paths: int, | |
| ) -> Union[sherpa.OfflineRecognizer, sherpa.OnlineRecognizer]: | |
| if repo_id in multi_lingual_models: | |
| return multi_lingual_models[repo_id]( | |
| repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths | |
| ) | |
| elif repo_id in chinese_models: | |
| return chinese_models[repo_id]( | |
| repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths | |
| ) | |
| elif repo_id in chinese_dialect_models: | |
| return chinese_dialect_models[repo_id]( | |
| repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths | |
| ) | |
| elif repo_id in english_models: | |
| return english_models[repo_id]( | |
| repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths | |
| ) | |
| elif repo_id in chinese_english_mixed_models: | |
| return chinese_english_mixed_models[repo_id]( | |
| repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths | |
| ) | |
| elif repo_id in chinese_cantonese_english_models: | |
| return chinese_cantonese_english_models[repo_id]( | |
| repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths | |
| ) | |
| elif repo_id in chinese_cantonese_english_japanese_korean_models: | |
| return chinese_cantonese_english_japanese_korean_models[repo_id]( | |
| repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths | |
| ) | |
| elif repo_id in cantonese_models: | |
| return cantonese_models[repo_id]( | |
| repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths | |
| ) | |
| elif repo_id in tibetan_models: | |
| return tibetan_models[repo_id]( | |
| repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths | |
| ) | |
| elif repo_id in arabic_models: | |
| return arabic_models[repo_id]( | |
| repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths | |
| ) | |
| elif repo_id in german_models: | |
| return german_models[repo_id]( | |
| repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths | |
| ) | |
| elif repo_id in french_models: | |
| return french_models[repo_id]( | |
| repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths | |
| ) | |
| elif repo_id in japanese_models: | |
| return japanese_models[repo_id]( | |
| repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths | |
| ) | |
| elif repo_id in russian_models: | |
| return russian_models[repo_id]( | |
| repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths | |
| ) | |
| elif repo_id in korean_models: | |
| return korean_models[repo_id]( | |
| repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths | |
| ) | |
| elif repo_id in thai_models: | |
| return thai_models[repo_id]( | |
| repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths | |
| ) | |
| else: | |
| raise ValueError(f"Unsupported repo_id: {repo_id}") | |
| def _get_nn_model_filename( | |
| repo_id: str, | |
| filename: str, | |
| subfolder: str = "exp", | |
| ) -> str: | |
| nn_model_filename = hf_hub_download( | |
| repo_id=repo_id, | |
| filename=filename, | |
| subfolder=subfolder, | |
| ) | |
| return nn_model_filename | |
| def _get_bpe_model_filename( | |
| repo_id: str, | |
| filename: str = "bpe.model", | |
| subfolder: str = "data/lang_bpe_500", | |
| ) -> str: | |
| bpe_model_filename = hf_hub_download( | |
| repo_id=repo_id, | |
| filename=filename, | |
| subfolder=subfolder, | |
| ) | |
| return bpe_model_filename | |
| def _get_token_filename( | |
| repo_id: str, | |
| filename: str = "tokens.txt", | |
| subfolder: str = "data/lang_char", | |
| ) -> str: | |
| token_filename = hf_hub_download( | |
| repo_id=repo_id, | |
| filename=filename, | |
| subfolder=subfolder, | |
| ) | |
| return token_filename | |
| def _get_aishell2_pretrained_model( | |
| repo_id: str, | |
| decoding_method: str, | |
| num_active_paths: int, | |
| ) -> sherpa.OfflineRecognizer: | |
| assert repo_id in [ | |
| # context-size 1 | |
| "yuekai/icefall-asr-aishell2-pruned-transducer-stateless5-A-2022-07-12", # noqa | |
| # context-size 2 | |
| "yuekai/icefall-asr-aishell2-pruned-transducer-stateless5-B-2022-07-12", # noqa | |
| ], repo_id | |
| nn_model = _get_nn_model_filename( | |
| repo_id=repo_id, | |
| filename="cpu_jit.pt", | |
| ) | |
| tokens = _get_token_filename(repo_id=repo_id) | |
| feat_config = sherpa.FeatureConfig() | |
| feat_config.fbank_opts.frame_opts.samp_freq = sample_rate | |
| feat_config.fbank_opts.mel_opts.num_bins = 80 | |
| feat_config.fbank_opts.frame_opts.dither = 0 | |
| config = sherpa.OfflineRecognizerConfig( | |
| nn_model=nn_model, | |
| tokens=tokens, | |
| use_gpu=False, | |
| feat_config=feat_config, | |
| decoding_method=decoding_method, | |
| num_active_paths=num_active_paths, | |
| ) | |
| recognizer = sherpa.OfflineRecognizer(config) | |
| return recognizer | |
| def _get_offline_pre_trained_model( | |
| repo_id: str, decoding_method: str, num_active_paths: int | |
| ) -> sherpa_onnx.OfflineRecognizer: | |
| assert repo_id in ( | |
| "k2-fsa/sherpa-onnx-zipformer-korean-2024-06-24", | |
| "reazon-research/reazonspeech-k2-v2", | |
| ), repo_id | |
| encoder_model = _get_nn_model_filename( | |
| repo_id=repo_id, | |
| filename="encoder-epoch-99-avg-1.int8.onnx", | |
| subfolder=".", | |
| ) | |
| decoder_model = _get_nn_model_filename( | |
| repo_id=repo_id, | |
| filename="decoder-epoch-99-avg-1.onnx", | |
| subfolder=".", | |
| ) | |
| joiner_model = _get_nn_model_filename( | |
| repo_id=repo_id, | |
| filename="joiner-epoch-99-avg-1.onnx", | |
| subfolder=".", | |
| ) | |
| tokens = _get_token_filename(repo_id=repo_id, subfolder=".") | |
| recognizer = sherpa_onnx.OfflineRecognizer.from_transducer( | |
| tokens=tokens, | |
| encoder=encoder_model, | |
| decoder=decoder_model, | |
| joiner=joiner_model, | |
| num_threads=2, | |
| sample_rate=16000, | |
| feature_dim=80, | |
| decoding_method=decoding_method, | |
| ) | |
| return recognizer | |
| def _get_yifan_thai_pretrained_model( | |
| repo_id: str, decoding_method: str, num_active_paths: int | |
| ) -> sherpa_onnx.OfflineRecognizer: | |
| assert repo_id in ( | |
| "yfyeung/icefall-asr-gigaspeech2-th-zipformer-2024-06-20", | |
| ), repo_id | |
| encoder_model = _get_nn_model_filename( | |
| repo_id=repo_id, | |
| filename="encoder-epoch-12-avg-5.int8.onnx", | |
| subfolder="exp", | |
| ) | |
| decoder_model = _get_nn_model_filename( | |
| repo_id=repo_id, | |
| filename="decoder-epoch-12-avg-5.onnx", | |
| subfolder="exp", | |
| ) | |
| joiner_model = _get_nn_model_filename( | |
| repo_id=repo_id, | |
| filename="joiner-epoch-12-avg-5.int8.onnx", | |
| subfolder="exp", | |
| ) | |
| tokens = _get_token_filename(repo_id=repo_id, subfolder="data/lang_bpe_2000") | |
| recognizer = sherpa_onnx.OfflineRecognizer.from_transducer( | |
| tokens=tokens, | |
| encoder=encoder_model, | |
| decoder=decoder_model, | |
| joiner=joiner_model, | |
| num_threads=2, | |
| sample_rate=16000, | |
| feature_dim=80, | |
| decoding_method=decoding_method, | |
| ) | |
| return recognizer | |
| def _get_zrjin_cantonese_pre_trained_model( | |
| repo_id: str, decoding_method: str, num_active_paths: int | |
| ) -> sherpa_onnx.OfflineRecognizer: | |
| assert repo_id in ("zrjin/icefall-asr-mdcc-zipformer-2024-03-11",), repo_id | |
| encoder_model = _get_nn_model_filename( | |
| repo_id=repo_id, | |
| filename="encoder-epoch-45-avg-35.int8.onnx", | |
| subfolder="exp", | |
| ) | |
| decoder_model = _get_nn_model_filename( | |
| repo_id=repo_id, | |
| filename="decoder-epoch-45-avg-35.onnx", | |
| subfolder="exp", | |
| ) | |
| joiner_model = _get_nn_model_filename( | |
| repo_id=repo_id, | |
| filename="joiner-epoch-45-avg-35.int8.onnx", | |
| subfolder="exp", | |
| ) | |
| tokens = _get_token_filename(repo_id=repo_id, subfolder="data/lang_char") | |
| recognizer = sherpa_onnx.OfflineRecognizer.from_transducer( | |
| tokens=tokens, | |
| encoder=encoder_model, | |
| decoder=decoder_model, | |
| joiner=joiner_model, | |
| num_threads=2, | |
| sample_rate=16000, | |
| feature_dim=80, | |
| decoding_method=decoding_method, | |
| ) | |
| return recognizer | |
| def _get_russian_pre_trained_model_ctc( | |
| repo_id: str, decoding_method: str, num_active_paths: int | |
| ) -> sherpa_onnx.OfflineRecognizer: | |
| assert repo_id in ( | |
| "csukuangfj/sherpa-onnx-nemo-ctc-giga-am-russian-2024-10-24", | |
| "csukuangfj/sherpa-onnx-nemo-ctc-giga-am-v2-russian-2025-04-19", | |
| ), repo_id | |
| model = _get_nn_model_filename( | |
| repo_id=repo_id, | |
| filename="model.int8.onnx", | |
| subfolder=".", | |
| ) | |
| tokens = _get_token_filename(repo_id=repo_id, subfolder=".") | |
| recognizer = sherpa_onnx.OfflineRecognizer.from_nemo_ctc( | |
| model=model, | |
| tokens=tokens, | |
| num_threads=2, | |
| ) | |
| return recognizer | |
| def _get_russian_pre_trained_model( | |
| repo_id: str, decoding_method: str, num_active_paths: int | |
| ) -> sherpa_onnx.OfflineRecognizer: | |
| assert repo_id in ( | |
| "alphacep/vosk-model-ru", | |
| "alphacep/vosk-model-small-ru", | |
| "csukuangfj/sherpa-onnx-nemo-transducer-giga-am-russian-2024-10-24", | |
| "csukuangfj/sherpa-onnx-nemo-transducer-giga-am-v2-russian-2025-04-19", | |
| ), repo_id | |
| if repo_id == "alphacep/vosk-model-ru": | |
| model_dir = "am-onnx" | |
| encoder = "encoder.onnx" | |
| model_type = "transducer" | |
| elif repo_id == "alphacep/vosk-model-small-ru": | |
| model_dir = "am" | |
| encoder = "encoder.onnx" | |
| model_type = "transducer" | |
| elif repo_id in ( | |
| "csukuangfj/sherpa-onnx-nemo-transducer-giga-am-russian-2024-10-24", | |
| "csukuangfj/sherpa-onnx-nemo-transducer-giga-am-v2-russian-2025-04-19", | |
| ): | |
| model_dir = "." | |
| encoder = "encoder.int8.onnx" | |
| model_type = "nemo_transducer" | |
| encoder_model = _get_nn_model_filename( | |
| repo_id=repo_id, | |
| filename=encoder, | |
| subfolder=model_dir, | |
| ) | |
| decoder_model = _get_nn_model_filename( | |
| repo_id=repo_id, | |
| filename="decoder.onnx", | |
| subfolder=model_dir, | |
| ) | |
| joiner_model = _get_nn_model_filename( | |
| repo_id=repo_id, | |
| filename="joiner.onnx", | |
| subfolder=model_dir, | |
| ) | |
| if repo_id in ( | |
| "csukuangfj/sherpa-onnx-nemo-transducer-giga-am-russian-2024-10-24", | |
| "csukuangfj/sherpa-onnx-nemo-transducer-giga-am-v2-russian-2025-04-19", | |
| ): | |
| tokens = _get_token_filename(repo_id=repo_id, subfolder=".") | |
| else: | |
| tokens = _get_token_filename(repo_id=repo_id, subfolder="lang") | |
| recognizer = sherpa_onnx.OfflineRecognizer.from_transducer( | |
| tokens=tokens, | |
| encoder=encoder_model, | |
| decoder=decoder_model, | |
| joiner=joiner_model, | |
| num_threads=2, | |
| sample_rate=16000, | |
| feature_dim=80, | |
| decoding_method=decoding_method, | |
| model_type=model_type, | |
| ) | |
| return recognizer | |
| def _get_moonshine_model( | |
| repo_id: str, decoding_method: str, num_active_paths: int | |
| ) -> sherpa_onnx.OfflineRecognizer: | |
| assert repo_id in ("moonshine-tiny", "moonshine-base"), repo_id | |
| if repo_id == "moonshine-tiny": | |
| full_repo_id = "csukuangfj/sherpa-onnx-moonshine-tiny-en-int8" | |
| elif repo_id == "moonshine-base": | |
| full_repo_id = "csukuangfj/sherpa-onnx-moonshine-base-en-int8" | |
| else: | |
| raise ValueError(f"Unknown repo_id: {repo_id}") | |
| preprocessor = _get_nn_model_filename( | |
| repo_id=full_repo_id, | |
| filename=f"preprocess.onnx", | |
| subfolder=".", | |
| ) | |
| encoder = _get_nn_model_filename( | |
| repo_id=full_repo_id, | |
| filename=f"encode.int8.onnx", | |
| subfolder=".", | |
| ) | |
| uncached_decoder = _get_nn_model_filename( | |
| repo_id=full_repo_id, | |
| filename=f"uncached_decode.int8.onnx", | |
| subfolder=".", | |
| ) | |
| cached_decoder = _get_nn_model_filename( | |
| repo_id=full_repo_id, | |
| filename=f"cached_decode.int8.onnx", | |
| subfolder=".", | |
| ) | |
| tokens = _get_token_filename( | |
| repo_id=full_repo_id, | |
| subfolder=".", | |
| filename="tokens.txt", | |
| ) | |
| recognizer = sherpa_onnx.OfflineRecognizer.from_moonshine( | |
| preprocessor=preprocessor, | |
| encoder=encoder, | |
| uncached_decoder=uncached_decoder, | |
| cached_decoder=cached_decoder, | |
| tokens=tokens, | |
| num_threads=2, | |
| ) | |
| return recognizer | |
| def _get_whisper_model( | |
| repo_id: str, decoding_method: str, num_active_paths: int | |
| ) -> sherpa_onnx.OfflineRecognizer: | |
| name = repo_id.split("-")[1] | |
| assert name in ("tiny.en", "base.en", "small.en", "medium.en"), repo_id | |
| full_repo_id = "csukuangfj/sherpa-onnx-whisper-" + name | |
| encoder = _get_nn_model_filename( | |
| repo_id=full_repo_id, | |
| filename=f"{name}-encoder.int8.onnx", | |
| subfolder=".", | |
| ) | |
| decoder = _get_nn_model_filename( | |
| repo_id=full_repo_id, | |
| filename=f"{name}-decoder.int8.onnx", | |
| subfolder=".", | |
| ) | |
| tokens = _get_token_filename( | |
| repo_id=full_repo_id, subfolder=".", filename=f"{name}-tokens.txt" | |
| ) | |
| recognizer = sherpa_onnx.OfflineRecognizer.from_whisper( | |
| encoder=encoder, | |
| decoder=decoder, | |
| tokens=tokens, | |
| num_threads=2, | |
| ) | |
| return recognizer | |
| def _get_gigaspeech_pre_trained_model( | |
| repo_id: str, | |
| decoding_method: str, | |
| num_active_paths: int, | |
| ) -> sherpa.OfflineRecognizer: | |
| assert repo_id in [ | |
| "wgb14/icefall-asr-gigaspeech-pruned-transducer-stateless2", | |
| ], repo_id | |
| nn_model = _get_nn_model_filename( | |
| repo_id=repo_id, | |
| filename="cpu_jit-iter-3488000-avg-20.pt", | |
| ) | |
| tokens = "./giga-tokens.txt" | |
| feat_config = sherpa.FeatureConfig() | |
| feat_config.fbank_opts.frame_opts.samp_freq = sample_rate | |
| feat_config.fbank_opts.mel_opts.num_bins = 80 | |
| feat_config.fbank_opts.frame_opts.dither = 0 | |
| config = sherpa.OfflineRecognizerConfig( | |
| nn_model=nn_model, | |
| tokens=tokens, | |
| use_gpu=False, | |
| feat_config=feat_config, | |
| decoding_method=decoding_method, | |
| num_active_paths=num_active_paths, | |
| ) | |
| recognizer = sherpa.OfflineRecognizer(config) | |
| return recognizer | |
| def _get_english_model( | |
| repo_id: str, | |
| decoding_method: str, | |
| num_active_paths: int, | |
| ) -> sherpa.OfflineRecognizer: | |
| assert repo_id in [ | |
| "WeijiZhuang/icefall-asr-librispeech-pruned-transducer-stateless8-2022-12-02", # noqa | |
| "yfyeung/icefall-asr-multidataset-pruned_transducer_stateless7-2023-05-04", # noqa | |
| "yfyeung/icefall-asr-finetune-mux-pruned_transducer_stateless7-2023-05-19", # noqa | |
| "csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13", # noqa | |
| "csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless7-2022-11-11", # noqa | |
| "csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless8-2022-11-14", # noqa | |
| "Zengwei/icefall-asr-librispeech-zipformer-large-2023-05-16", # noqa | |
| "Zengwei/icefall-asr-librispeech-zipformer-2023-05-15", # noqa | |
| "Zengwei/icefall-asr-librispeech-zipformer-small-2023-05-16", # noqa | |
| "videodanchik/icefall-asr-tedlium3-conformer-ctc2", | |
| "pkufool/icefall_asr_librispeech_conformer_ctc", | |
| "WayneWiser/icefall-asr-librispeech-conformer-ctc2-jit-bpe-500-2022-07-21", | |
| ], repo_id | |
| filename = "cpu_jit.pt" | |
| if ( | |
| repo_id | |
| == "csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless7-2022-11-11" | |
| ): | |
| filename = "cpu_jit-torch-1.10.0.pt" | |
| if ( | |
| repo_id | |
| == "WeijiZhuang/icefall-asr-librispeech-pruned-transducer-stateless8-2022-12-02" | |
| ): | |
| filename = "cpu_jit-torch-1.10.pt" | |
| if ( | |
| repo_id | |
| == "yfyeung/icefall-asr-multidataset-pruned_transducer_stateless7-2023-05-04" | |
| ): | |
| filename = "cpu_jit-epoch-30-avg-4.pt" | |
| if ( | |
| repo_id | |
| == "yfyeung/icefall-asr-finetune-mux-pruned_transducer_stateless7-2023-05-19" | |
| ): | |
| filename = "cpu_jit-epoch-20-avg-5.pt" | |
| if repo_id in ( | |
| "Zengwei/icefall-asr-librispeech-zipformer-large-2023-05-16", | |
| "Zengwei/icefall-asr-librispeech-zipformer-2023-05-15", | |
| "Zengwei/icefall-asr-librispeech-zipformer-small-2023-05-16", | |
| ): | |
| filename = "jit_script.pt" | |
| nn_model = _get_nn_model_filename( | |
| repo_id=repo_id, | |
| filename=filename, | |
| ) | |
| subfolder = "data/lang_bpe_500" | |
| if repo_id in ( | |
| "videodanchik/icefall-asr-tedlium3-conformer-ctc2", | |
| "pkufool/icefall_asr_librispeech_conformer_ctc", | |
| ): | |
| subfolder = "data/lang_bpe" | |
| tokens = _get_token_filename(repo_id=repo_id, subfolder=subfolder) | |
| feat_config = sherpa.FeatureConfig() | |
| feat_config.fbank_opts.frame_opts.samp_freq = sample_rate | |
| feat_config.fbank_opts.mel_opts.num_bins = 80 | |
| feat_config.fbank_opts.frame_opts.dither = 0 | |
| config = sherpa.OfflineRecognizerConfig( | |
| nn_model=nn_model, | |
| tokens=tokens, | |
| use_gpu=False, | |
| feat_config=feat_config, | |
| decoding_method=decoding_method, | |
| num_active_paths=num_active_paths, | |
| ) | |
| recognizer = sherpa.OfflineRecognizer(config) | |
| return recognizer | |
| def _get_wenetspeech_pre_trained_model( | |
| repo_id: str, | |
| decoding_method: str, | |
| num_active_paths: int, | |
| ): | |
| assert repo_id in [ | |
| "luomingshuang/icefall_asr_wenetspeech_pruned_transducer_stateless2", | |
| ], repo_id | |
| nn_model = _get_nn_model_filename( | |
| repo_id=repo_id, | |
| filename="cpu_jit_epoch_10_avg_2_torch_1.7.1.pt", | |
| ) | |
| tokens = _get_token_filename(repo_id=repo_id) | |
| feat_config = sherpa.FeatureConfig() | |
| feat_config.fbank_opts.frame_opts.samp_freq = sample_rate | |
| feat_config.fbank_opts.mel_opts.num_bins = 80 | |
| feat_config.fbank_opts.frame_opts.dither = 0 | |
| config = sherpa.OfflineRecognizerConfig( | |
| nn_model=nn_model, | |
| tokens=tokens, | |
| use_gpu=False, | |
| feat_config=feat_config, | |
| decoding_method=decoding_method, | |
| num_active_paths=num_active_paths, | |
| ) | |
| recognizer = sherpa.OfflineRecognizer(config) | |
| return recognizer | |
| def _get_fire_red_asr_models(repo_id: str, decoding_method: str, num_active_paths: int): | |
| assert repo_id in ( | |
| "csukuangfj/sherpa-onnx-fire-red-asr-large-zh_en-2025-02-16", | |
| ), repo_id | |
| encoder = _get_nn_model_filename( | |
| repo_id=repo_id, | |
| filename="encoder.int8.onnx", | |
| subfolder=".", | |
| ) | |
| decoder = _get_nn_model_filename( | |
| repo_id=repo_id, | |
| filename="decoder.int8.onnx", | |
| subfolder=".", | |
| ) | |
| tokens = _get_nn_model_filename( | |
| repo_id=repo_id, | |
| filename="tokens.txt", | |
| subfolder=".", | |
| ) | |
| return sherpa_onnx.OfflineRecognizer.from_fire_red_asr( | |
| encoder=encoder, | |
| decoder=decoder, | |
| tokens=tokens, | |
| num_threads=2, | |
| ) | |
| def _get_chinese_english_mixed_model_onnx( | |
| repo_id: str, | |
| decoding_method: str, | |
| num_active_paths: int, | |
| ) -> sherpa_onnx.OfflineRecognizer: | |
| assert repo_id in [ | |
| "zrjin/icefall-asr-zipformer-multi-zh-en-2023-11-22", | |
| ], repo_id | |
| encoder_model = _get_nn_model_filename( | |
| repo_id=repo_id, | |
| filename="encoder-epoch-34-avg-19.int8.onnx", | |
| subfolder="exp", | |
| ) | |
| decoder_model = _get_nn_model_filename( | |
| repo_id=repo_id, | |
| filename="decoder-epoch-34-avg-19.onnx", | |
| subfolder="exp", | |
| ) | |
| joiner_model = _get_nn_model_filename( | |
| repo_id=repo_id, | |
| filename="joiner-epoch-34-avg-19.int8.onnx", | |
| subfolder="exp", | |
| ) | |
| tokens = _get_token_filename(repo_id=repo_id, subfolder="data/lang_bbpe_2000") | |
| recognizer = sherpa_onnx.OfflineRecognizer.from_transducer( | |
| tokens=tokens, | |
| encoder=encoder_model, | |
| decoder=decoder_model, | |
| joiner=joiner_model, | |
| num_threads=2, | |
| sample_rate=16000, | |
| feature_dim=80, | |
| decoding_method=decoding_method, | |
| max_active_paths=num_active_paths, | |
| ) | |
| return recognizer | |
| def _get_chinese_english_mixed_model( | |
| repo_id: str, | |
| decoding_method: str, | |
| num_active_paths: int, | |
| ) -> sherpa.OfflineRecognizer: | |
| assert repo_id in [ | |
| "luomingshuang/icefall_asr_tal-csasr_pruned_transducer_stateless5", | |
| "ptrnull/icefall-asr-conv-emformer-transducer-stateless2-zh", | |
| ], repo_id | |
| if repo_id == "luomingshuang/icefall_asr_tal-csasr_pruned_transducer_stateless5": | |
| filename = "cpu_jit.pt" | |
| subfolder = "data/lang_char" | |
| elif repo_id == "ptrnull/icefall-asr-conv-emformer-transducer-stateless2-zh": | |
| filename = "cpu_jit-epoch-11-avg-1.pt" | |
| subfolder = "data/lang_char_bpe" | |
| nn_model = _get_nn_model_filename( | |
| repo_id=repo_id, | |
| filename=filename, | |
| ) | |
| tokens = _get_token_filename(repo_id=repo_id, subfolder=subfolder) | |
| feat_config = sherpa.FeatureConfig() | |
| feat_config.fbank_opts.frame_opts.samp_freq = sample_rate | |
| feat_config.fbank_opts.mel_opts.num_bins = 80 | |
| feat_config.fbank_opts.frame_opts.dither = 0 | |
| config = sherpa.OfflineRecognizerConfig( | |
| nn_model=nn_model, | |
| tokens=tokens, | |
| use_gpu=False, | |
| feat_config=feat_config, | |
| decoding_method=decoding_method, | |
| num_active_paths=num_active_paths, | |
| ) | |
| recognizer = sherpa.OfflineRecognizer(config) | |
| return recognizer | |
| def _get_alimeeting_pre_trained_model( | |
| repo_id: str, | |
| decoding_method: str, | |
| num_active_paths: int, | |
| ): | |
| assert repo_id in [ | |
| "desh2608/icefall-asr-alimeeting-pruned-transducer-stateless7", | |
| "luomingshuang/icefall_asr_alimeeting_pruned_transducer_stateless2", | |
| ], repo_id | |
| if repo_id == "desh2608/icefall-asr-alimeeting-pruned-transducer-stateless7": | |
| filename = "cpu_jit.pt" | |
| elif repo_id == "luomingshuang/icefall_asr_alimeeting_pruned_transducer_stateless2": | |
| filename = "cpu_jit_torch_1.7.1.pt" | |
| nn_model = _get_nn_model_filename( | |
| repo_id=repo_id, | |
| filename=filename, | |
| ) | |
| tokens = _get_token_filename(repo_id=repo_id) | |
| feat_config = sherpa.FeatureConfig() | |
| feat_config.fbank_opts.frame_opts.samp_freq = sample_rate | |
| feat_config.fbank_opts.mel_opts.num_bins = 80 | |
| feat_config.fbank_opts.frame_opts.dither = 0 | |
| config = sherpa.OfflineRecognizerConfig( | |
| nn_model=nn_model, | |
| tokens=tokens, | |
| use_gpu=False, | |
| feat_config=feat_config, | |
| decoding_method=decoding_method, | |
| num_active_paths=num_active_paths, | |
| ) | |
| recognizer = sherpa.OfflineRecognizer(config) | |
| return recognizer | |
| def _get_dolphin_ctc_models(repo_id: str, decoding_method: str, num_active_paths: int): | |
| assert repo_id in [ | |
| "csukuangfj/sherpa-onnx-dolphin-base-ctc-multi-lang-int8-2025-04-02", | |
| "csukuangfj/sherpa-onnx-dolphin-small-ctc-multi-lang-int8-2025-04-02", | |
| "csukuangfj/sherpa-onnx-dolphin-base-ctc-multi-lang-2025-04-02", | |
| "csukuangfj/sherpa-onnx-dolphin-small-ctc-multi-lang-2025-04-02", | |
| ], repo_id | |
| if repo_id in [ | |
| "csukuangfj/sherpa-onnx-dolphin-base-ctc-multi-lang-int8-2025-04-02", | |
| "csukuangfj/sherpa-onnx-dolphin-small-ctc-multi-lang-int8-2025-04-02", | |
| ]: | |
| use_int8 = True | |
| else: | |
| use_int8 = False | |
| nn_model = _get_nn_model_filename( | |
| repo_id=repo_id, | |
| filename="model.int8.onnx" if use_int8 else "model.onnx", | |
| subfolder=".", | |
| ) | |
| tokens = _get_token_filename( | |
| repo_id=repo_id, | |
| filename="tokens.txt", | |
| subfolder=".", | |
| ) | |
| recognizer = sherpa_onnx.OfflineRecognizer.from_dolphin_ctc( | |
| tokens=tokens, | |
| model=nn_model, | |
| num_threads=2, | |
| ) | |
| return recognizer | |
| def _get_wenet_model( | |
| repo_id: str, | |
| decoding_method: str, | |
| num_active_paths: int, | |
| ): | |
| assert repo_id in [ | |
| "csukuangfj/wenet-chinese-model", | |
| "csukuangfj/wenet-english-model", | |
| ], repo_id | |
| nn_model = _get_nn_model_filename( | |
| repo_id=repo_id, | |
| filename="final.zip", | |
| subfolder=".", | |
| ) | |
| tokens = _get_token_filename( | |
| repo_id=repo_id, | |
| filename="units.txt", | |
| subfolder=".", | |
| ) | |
| feat_config = sherpa.FeatureConfig(normalize_samples=False) | |
| feat_config.fbank_opts.frame_opts.samp_freq = sample_rate | |
| feat_config.fbank_opts.mel_opts.num_bins = 80 | |
| feat_config.fbank_opts.frame_opts.dither = 0 | |
| config = sherpa.OfflineRecognizerConfig( | |
| nn_model=nn_model, | |
| tokens=tokens, | |
| use_gpu=False, | |
| feat_config=feat_config, | |
| decoding_method=decoding_method, | |
| num_active_paths=num_active_paths, | |
| ) | |
| recognizer = sherpa.OfflineRecognizer(config) | |
| return recognizer | |
| def _get_aidatatang_200zh_pretrained_mode( | |
| repo_id: str, | |
| decoding_method: str, | |
| num_active_paths: int, | |
| ): | |
| assert repo_id in [ | |
| "luomingshuang/icefall_asr_aidatatang-200zh_pruned_transducer_stateless2", | |
| ], repo_id | |
| nn_model = _get_nn_model_filename( | |
| repo_id=repo_id, | |
| filename="cpu_jit_torch.1.7.1.pt", | |
| ) | |
| tokens = _get_token_filename(repo_id=repo_id) | |
| feat_config = sherpa.FeatureConfig() | |
| feat_config.fbank_opts.frame_opts.samp_freq = sample_rate | |
| feat_config.fbank_opts.mel_opts.num_bins = 80 | |
| feat_config.fbank_opts.frame_opts.dither = 0 | |
| config = sherpa.OfflineRecognizerConfig( | |
| nn_model=nn_model, | |
| tokens=tokens, | |
| use_gpu=False, | |
| feat_config=feat_config, | |
| decoding_method=decoding_method, | |
| num_active_paths=num_active_paths, | |
| ) | |
| recognizer = sherpa.OfflineRecognizer(config) | |
| return recognizer | |
| def _get_tibetan_pre_trained_model( | |
| repo_id: str, | |
| decoding_method: str, | |
| num_active_paths: int, | |
| ): | |
| assert repo_id in [ | |
| "syzym/icefall-asr-xbmu-amdo31-pruned-transducer-stateless7-2022-12-02", | |
| "syzym/icefall-asr-xbmu-amdo31-pruned-transducer-stateless5-2022-11-29", | |
| ], repo_id | |
| filename = "cpu_jit.pt" | |
| if ( | |
| repo_id | |
| == "syzym/icefall-asr-xbmu-amdo31-pruned-transducer-stateless5-2022-11-29" | |
| ): | |
| filename = "cpu_jit-epoch-28-avg-23-torch-1.10.0.pt" | |
| nn_model = _get_nn_model_filename( | |
| repo_id=repo_id, | |
| filename=filename, | |
| ) | |
| tokens = _get_token_filename(repo_id=repo_id, subfolder="data/lang_bpe_500") | |
| feat_config = sherpa.FeatureConfig() | |
| feat_config.fbank_opts.frame_opts.samp_freq = sample_rate | |
| feat_config.fbank_opts.mel_opts.num_bins = 80 | |
| feat_config.fbank_opts.frame_opts.dither = 0 | |
| config = sherpa.OfflineRecognizerConfig( | |
| nn_model=nn_model, | |
| tokens=tokens, | |
| use_gpu=False, | |
| feat_config=feat_config, | |
| decoding_method=decoding_method, | |
| num_active_paths=num_active_paths, | |
| ) | |
| recognizer = sherpa.OfflineRecognizer(config) | |
| return recognizer | |
| def _get_arabic_pre_trained_model( | |
| repo_id: str, | |
| decoding_method: str, | |
| num_active_paths: int, | |
| ): | |
| assert repo_id in [ | |
| "AmirHussein/icefall-asr-mgb2-conformer_ctc-2022-27-06", | |
| ], repo_id | |
| nn_model = _get_nn_model_filename( | |
| repo_id=repo_id, | |
| filename="cpu_jit.pt", | |
| ) | |
| tokens = _get_token_filename(repo_id=repo_id, subfolder="data/lang_bpe_5000") | |
| feat_config = sherpa.FeatureConfig() | |
| feat_config.fbank_opts.frame_opts.samp_freq = sample_rate | |
| feat_config.fbank_opts.mel_opts.num_bins = 80 | |
| feat_config.fbank_opts.frame_opts.dither = 0 | |
| config = sherpa.OfflineRecognizerConfig( | |
| nn_model=nn_model, | |
| tokens=tokens, | |
| use_gpu=False, | |
| feat_config=feat_config, | |
| decoding_method=decoding_method, | |
| num_active_paths=num_active_paths, | |
| ) | |
| recognizer = sherpa.OfflineRecognizer(config) | |
| return recognizer | |
| def _get_german_pre_trained_model( | |
| repo_id: str, | |
| decoding_method: str, | |
| num_active_paths: int, | |
| ): | |
| assert repo_id in [ | |
| "csukuangfj/wav2vec2.0-torchaudio", | |
| ], repo_id | |
| nn_model = _get_nn_model_filename( | |
| repo_id=repo_id, | |
| filename="voxpopuli_asr_base_10k_de.pt", | |
| subfolder=".", | |
| ) | |
| tokens = _get_token_filename( | |
| repo_id=repo_id, | |
| filename="tokens-de.txt", | |
| subfolder=".", | |
| ) | |
| config = sherpa.OfflineRecognizerConfig( | |
| nn_model=nn_model, | |
| tokens=tokens, | |
| use_gpu=False, | |
| decoding_method=decoding_method, | |
| num_active_paths=num_active_paths, | |
| ) | |
| recognizer = sherpa.OfflineRecognizer(config) | |
| return recognizer | |
| def _get_french_pre_trained_model( | |
| repo_id: str, | |
| decoding_method: str, | |
| num_active_paths: int, | |
| ) -> sherpa_onnx.OnlineRecognizer: | |
| assert repo_id in [ | |
| "shaojieli/sherpa-onnx-streaming-zipformer-fr-2023-04-14", | |
| ], repo_id | |
| encoder_model = _get_nn_model_filename( | |
| repo_id=repo_id, | |
| filename="encoder-epoch-29-avg-9-with-averaged-model.onnx", | |
| subfolder=".", | |
| ) | |
| decoder_model = _get_nn_model_filename( | |
| repo_id=repo_id, | |
| filename="decoder-epoch-29-avg-9-with-averaged-model.onnx", | |
| subfolder=".", | |
| ) | |
| joiner_model = _get_nn_model_filename( | |
| repo_id=repo_id, | |
| filename="joiner-epoch-29-avg-9-with-averaged-model.onnx", | |
| subfolder=".", | |
| ) | |
| tokens = _get_token_filename(repo_id=repo_id, subfolder=".") | |
| recognizer = sherpa_onnx.OnlineRecognizer.from_transducer( | |
| tokens=tokens, | |
| encoder=encoder_model, | |
| decoder=decoder_model, | |
| joiner=joiner_model, | |
| num_threads=2, | |
| sample_rate=16000, | |
| feature_dim=80, | |
| decoding_method=decoding_method, | |
| max_active_paths=num_active_paths, | |
| ) | |
| return recognizer | |
| def _get_sherpa_onnx_nemo_transducer_models( | |
| repo_id: str, | |
| decoding_method: str, | |
| num_active_paths: int, | |
| ) -> sherpa_onnx.OfflineRecognizer: | |
| assert repo_id in [ | |
| "csukuangfj/sherpa-onnx-nemo-parakeet_tdt_transducer_110m-en-36000", | |
| ], repo_id | |
| encoder_model = _get_nn_model_filename( | |
| repo_id=repo_id, | |
| filename="encoder.onnx", | |
| subfolder=".", | |
| ) | |
| decoder_model = _get_nn_model_filename( | |
| repo_id=repo_id, | |
| filename="decoder.onnx", | |
| subfolder=".", | |
| ) | |
| joiner_model = _get_nn_model_filename( | |
| repo_id=repo_id, | |
| filename="joiner.onnx", | |
| subfolder=".", | |
| ) | |
| tokens = _get_token_filename(repo_id=repo_id, subfolder=".") | |
| recognizer = sherpa_onnx.OfflineRecognizer.from_transducer( | |
| tokens=tokens, | |
| encoder=encoder_model, | |
| decoder=decoder_model, | |
| joiner=joiner_model, | |
| num_threads=2, | |
| sample_rate=16000, | |
| feature_dim=80, | |
| model_type="nemo_transducer", | |
| decoding_method=decoding_method, | |
| max_active_paths=num_active_paths, | |
| ) | |
| return recognizer | |
| def _get_sherpa_onnx_nemo_ctc_models( | |
| repo_id: str, | |
| decoding_method: str, | |
| num_active_paths: int, | |
| ) -> sherpa_onnx.OfflineRecognizer: | |
| assert repo_id in [ | |
| "csukuangfj/sherpa-onnx-nemo-parakeet_tdt_ctc_110m-en-36000", | |
| ], repo_id | |
| model = _get_nn_model_filename( | |
| repo_id=repo_id, | |
| filename="model.onnx", | |
| subfolder=".", | |
| ) | |
| tokens = _get_token_filename(repo_id=repo_id, subfolder=".") | |
| recognizer = sherpa_onnx.OfflineRecognizer.from_nemo_ctc( | |
| tokens=tokens, | |
| model=model, | |
| num_threads=2, | |
| sample_rate=16000, | |
| feature_dim=80, | |
| ) | |
| return recognizer | |
| def _get_sherpa_onnx_offline_zipformer_pre_trained_model( | |
| repo_id: str, | |
| decoding_method: str, | |
| num_active_paths: int, | |
| ) -> sherpa_onnx.OfflineRecognizer: | |
| assert repo_id in [ | |
| "csukuangfj/sherpa-onnx-zipformer-en-libriheavy-20230926-large", | |
| "csukuangfj/sherpa-onnx-zipformer-en-libriheavy-20230926-medium", | |
| "csukuangfj/sherpa-onnx-zipformer-en-libriheavy-20230926-small", | |
| "csukuangfj/sherpa-onnx-zipformer-en-libriheavy-20230830-large-punct-case", | |
| "csukuangfj/sherpa-onnx-zipformer-en-libriheavy-20230830-medium-punct-case", | |
| "csukuangfj/sherpa-onnx-zipformer-en-libriheavy-20230830-small-punct-case", | |
| ], repo_id | |
| if repo_id == "csukuangfj/sherpa-onnx-zipformer-en-libriheavy-20230926-large": | |
| epoch = 16 | |
| avg = 3 | |
| elif repo_id == "csukuangfj/sherpa-onnx-zipformer-en-libriheavy-20230926-medium": | |
| epoch = 60 | |
| avg = 20 | |
| elif repo_id == "csukuangfj/sherpa-onnx-zipformer-en-libriheavy-20230926-small": | |
| epoch = 90 | |
| avg = 20 | |
| elif ( | |
| repo_id | |
| == "csukuangfj/sherpa-onnx-zipformer-en-libriheavy-20230830-large-punct-case" | |
| ): | |
| epoch = 16 | |
| avg = 2 | |
| elif ( | |
| repo_id | |
| == "csukuangfj/sherpa-onnx-zipformer-en-libriheavy-20230830-medium-punct-case" | |
| ): | |
| epoch = 50 | |
| avg = 15 | |
| elif ( | |
| repo_id | |
| == "csukuangfj/sherpa-onnx-zipformer-en-libriheavy-20230830-small-punct-case" | |
| ): | |
| epoch = 88 | |
| avg = 41 | |
| encoder_model = _get_nn_model_filename( | |
| repo_id=repo_id, | |
| filename=f"encoder-epoch-{epoch}-avg-{avg}.int8.onnx", | |
| subfolder=".", | |
| ) | |
| decoder_model = _get_nn_model_filename( | |
| repo_id=repo_id, | |
| filename=f"decoder-epoch-{epoch}-avg-{avg}.onnx", | |
| subfolder=".", | |
| ) | |
| joiner_model = _get_nn_model_filename( | |
| repo_id=repo_id, | |
| filename=f"joiner-epoch-{epoch}-avg-{avg}.int8.onnx", | |
| subfolder=".", | |
| ) | |
| tokens = _get_token_filename(repo_id=repo_id, subfolder=".") | |
| recognizer = sherpa_onnx.OfflineRecognizer.from_transducer( | |
| tokens=tokens, | |
| encoder=encoder_model, | |
| decoder=decoder_model, | |
| joiner=joiner_model, | |
| num_threads=2, | |
| sample_rate=16000, | |
| feature_dim=80, | |
| decoding_method=decoding_method, | |
| max_active_paths=num_active_paths, | |
| ) | |
| return recognizer | |
| def _get_streaming_zipformer_pre_trained_model( | |
| repo_id: str, | |
| decoding_method: str, | |
| num_active_paths: int, | |
| ) -> sherpa_onnx.OnlineRecognizer: | |
| assert repo_id in [ | |
| "csukuangfj/sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20", | |
| "k2-fsa/sherpa-onnx-streaming-zipformer-korean-2024-06-16", | |
| ], repo_id | |
| encoder_model = _get_nn_model_filename( | |
| repo_id=repo_id, | |
| filename="encoder-epoch-99-avg-1.onnx", | |
| subfolder=".", | |
| ) | |
| decoder_model = _get_nn_model_filename( | |
| repo_id=repo_id, | |
| filename="decoder-epoch-99-avg-1.onnx", | |
| subfolder=".", | |
| ) | |
| joiner_model = _get_nn_model_filename( | |
| repo_id=repo_id, | |
| filename="joiner-epoch-99-avg-1.onnx", | |
| subfolder=".", | |
| ) | |
| tokens = _get_token_filename(repo_id=repo_id, subfolder=".") | |
| recognizer = sherpa_onnx.OnlineRecognizer.from_transducer( | |
| tokens=tokens, | |
| encoder=encoder_model, | |
| decoder=decoder_model, | |
| joiner=joiner_model, | |
| num_threads=2, | |
| sample_rate=16000, | |
| feature_dim=80, | |
| decoding_method=decoding_method, | |
| max_active_paths=num_active_paths, | |
| ) | |
| return recognizer | |
| def _get_japanese_pre_trained_model( | |
| repo_id: str, | |
| decoding_method: str, | |
| num_active_paths: int, | |
| ) -> sherpa.OnlineRecognizer: | |
| repo_id, kind = repo_id.rsplit("-", maxsplit=1) | |
| assert repo_id in [ | |
| "TeoWenShen/icefall-asr-csj-pruned-transducer-stateless7-streaming-230208" | |
| ], repo_id | |
| assert kind in ("fluent", "disfluent"), kind | |
| encoder_model = _get_nn_model_filename( | |
| repo_id=repo_id, filename="encoder_jit_trace.pt", subfolder=f"exp_{kind}" | |
| ) | |
| decoder_model = _get_nn_model_filename( | |
| repo_id=repo_id, filename="decoder_jit_trace.pt", subfolder=f"exp_{kind}" | |
| ) | |
| joiner_model = _get_nn_model_filename( | |
| repo_id=repo_id, filename="joiner_jit_trace.pt", subfolder=f"exp_{kind}" | |
| ) | |
| tokens = _get_token_filename(repo_id=repo_id) | |
| feat_config = sherpa.FeatureConfig() | |
| feat_config.fbank_opts.frame_opts.samp_freq = sample_rate | |
| feat_config.fbank_opts.mel_opts.num_bins = 80 | |
| feat_config.fbank_opts.frame_opts.dither = 0 | |
| config = sherpa.OnlineRecognizerConfig( | |
| nn_model="", | |
| encoder_model=encoder_model, | |
| decoder_model=decoder_model, | |
| joiner_model=joiner_model, | |
| tokens=tokens, | |
| use_gpu=False, | |
| feat_config=feat_config, | |
| decoding_method=decoding_method, | |
| num_active_paths=num_active_paths, | |
| chunk_size=32, | |
| ) | |
| recognizer = sherpa.OnlineRecognizer(config) | |
| return recognizer | |
| def _get_gigaspeech_pre_trained_model_onnx( | |
| repo_id: str, | |
| decoding_method: str, | |
| num_active_paths: int, | |
| ) -> sherpa_onnx.OfflineRecognizer: | |
| assert repo_id in [ | |
| "yfyeung/icefall-asr-gigaspeech-zipformer-2023-10-17", | |
| ], repo_id | |
| encoder_model = _get_nn_model_filename( | |
| repo_id=repo_id, | |
| filename="encoder-epoch-30-avg-9.onnx", | |
| subfolder="exp", | |
| ) | |
| decoder_model = _get_nn_model_filename( | |
| repo_id=repo_id, | |
| filename="decoder-epoch-30-avg-9.onnx", | |
| subfolder="exp", | |
| ) | |
| joiner_model = _get_nn_model_filename( | |
| repo_id=repo_id, | |
| filename="joiner-epoch-30-avg-9.onnx", | |
| subfolder="exp", | |
| ) | |
| tokens = _get_token_filename(repo_id=repo_id, subfolder="data/lang_bpe_500") | |
| recognizer = sherpa_onnx.OfflineRecognizer.from_transducer( | |
| tokens=tokens, | |
| encoder=encoder_model, | |
| decoder=decoder_model, | |
| joiner=joiner_model, | |
| num_threads=2, | |
| sample_rate=16000, | |
| feature_dim=80, | |
| decoding_method=decoding_method, | |
| max_active_paths=num_active_paths, | |
| ) | |
| return recognizer | |
| def _get_streaming_paraformer_zh_yue_en_pre_trained_model( | |
| repo_id: str, | |
| decoding_method: str, | |
| num_active_paths: int, | |
| ) -> sherpa_onnx.OnlineRecognizer: | |
| assert repo_id in [ | |
| "csukuangfj/sherpa-onnx-streaming-paraformer-trilingual-zh-cantonese-en", | |
| ], repo_id | |
| encoder_model = _get_nn_model_filename( | |
| repo_id=repo_id, | |
| filename="encoder.int8.onnx", | |
| subfolder=".", | |
| ) | |
| decoder_model = _get_nn_model_filename( | |
| repo_id=repo_id, | |
| filename="decoder.int8.onnx", | |
| subfolder=".", | |
| ) | |
| tokens = _get_token_filename(repo_id=repo_id, subfolder=".") | |
| recognizer = sherpa_onnx.OnlineRecognizer.from_paraformer( | |
| tokens=tokens, | |
| encoder=encoder_model, | |
| decoder=decoder_model, | |
| num_threads=2, | |
| sample_rate=16000, | |
| feature_dim=80, | |
| decoding_method=decoding_method, | |
| ) | |
| return recognizer | |
| def _get_paraformer_en_pre_trained_model( | |
| repo_id: str, | |
| decoding_method: str, | |
| num_active_paths: int, | |
| ) -> sherpa_onnx.OfflineRecognizer: | |
| assert repo_id in [ | |
| "yujinqiu/sherpa-onnx-paraformer-en-2023-10-24", | |
| ], repo_id | |
| nn_model = _get_nn_model_filename( | |
| repo_id=repo_id, | |
| filename="model.int8.onnx", | |
| subfolder=".", | |
| ) | |
| tokens = _get_token_filename( | |
| repo_id=repo_id, filename="new_tokens.txt", subfolder="." | |
| ) | |
| recognizer = sherpa_onnx.OfflineRecognizer.from_paraformer( | |
| paraformer=nn_model, | |
| tokens=tokens, | |
| num_threads=2, | |
| sample_rate=sample_rate, | |
| feature_dim=80, | |
| decoding_method="greedy_search", | |
| debug=False, | |
| ) | |
| return recognizer | |
| def _get_chinese_dialect_models( | |
| repo_id: str, decoding_method: str, num_active_paths: int | |
| ) -> sherpa_onnx.OfflineRecognizer: | |
| assert repo_id in [ | |
| "csukuangfj/sherpa-onnx-telespeech-ctc-int8-zh-2024-06-04", | |
| ], repo_id | |
| nn_model = _get_nn_model_filename( | |
| repo_id=repo_id, | |
| filename="model.int8.onnx", | |
| subfolder=".", | |
| ) | |
| tokens = _get_token_filename(repo_id=repo_id, subfolder=".") | |
| recognizer = sherpa_onnx.OfflineRecognizer.from_telespeech_ctc( | |
| model=nn_model, | |
| tokens=tokens, | |
| num_threads=2, | |
| ) | |
| return recognizer | |
| def _get_sense_voice_pre_trained_model( | |
| repo_id: str, | |
| decoding_method: str, | |
| num_active_paths: int, | |
| ) -> sherpa_onnx.OfflineRecognizer: | |
| assert repo_id in [ | |
| "csukuangfj/sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17", | |
| ], repo_id | |
| nn_model = _get_nn_model_filename( | |
| repo_id=repo_id, | |
| filename="model.int8.onnx", | |
| subfolder=".", | |
| ) | |
| tokens = _get_token_filename(repo_id=repo_id, subfolder=".") | |
| recognizer = sherpa_onnx.OfflineRecognizer.from_sense_voice( | |
| model=nn_model, | |
| tokens=tokens, | |
| num_threads=2, | |
| sample_rate=sample_rate, | |
| feature_dim=80, | |
| decoding_method="greedy_search", | |
| debug=True, | |
| use_itn=True, | |
| ) | |
| return recognizer | |
| def _get_paraformer_pre_trained_model( | |
| repo_id: str, | |
| decoding_method: str, | |
| num_active_paths: int, | |
| ) -> sherpa_onnx.OfflineRecognizer: | |
| assert repo_id in [ | |
| "csukuangfj/sherpa-onnx-paraformer-zh-2023-03-28", | |
| "csukuangfj/sherpa-onnx-paraformer-zh-2024-03-09", | |
| "csukuangfj/sherpa-onnx-paraformer-zh-small-2024-03-09", | |
| "csukuangfj/sherpa-onnx-paraformer-trilingual-zh-cantonese-en", | |
| "csukuangfj/sherpa-onnx-paraformer-en-2024-03-09", | |
| ], repo_id | |
| nn_model = _get_nn_model_filename( | |
| repo_id=repo_id, | |
| filename="model.int8.onnx", | |
| subfolder=".", | |
| ) | |
| tokens = _get_token_filename(repo_id=repo_id, subfolder=".") | |
| recognizer = sherpa_onnx.OfflineRecognizer.from_paraformer( | |
| paraformer=nn_model, | |
| tokens=tokens, | |
| num_threads=2, | |
| sample_rate=sample_rate, | |
| feature_dim=80, | |
| decoding_method="greedy_search", | |
| debug=False, | |
| ) | |
| return recognizer | |
| def _get_aishell_pre_trained_model( | |
| repo_id: str, | |
| decoding_method: str, | |
| num_active_paths: int, | |
| ) -> sherpa_onnx.OfflineRecognizer: | |
| assert repo_id in ( | |
| "zrjin/icefall-asr-aishell-zipformer-large-2023-10-24", | |
| "zrjin/icefall-asr-aishell-zipformer-small-2023-10-24", | |
| "zrjin/icefall-asr-aishell-zipformer-2023-10-24", | |
| ), repo_id | |
| if repo_id == "zrjin/icefall-asr-aishell-zipformer-large-2023-10-24": | |
| epoch = 56 | |
| avg = 23 | |
| elif repo_id == "zrjin/icefall-asr-aishell-zipformer-small-2023-10-24": | |
| epoch = 55 | |
| avg = 21 | |
| elif repo_id == "zrjin/icefall-asr-aishell-zipformer-2023-10-24": | |
| epoch = 55 | |
| avg = 17 | |
| encoder_model = _get_nn_model_filename( | |
| repo_id=repo_id, | |
| filename=f"encoder-epoch-{epoch}-avg-{avg}.onnx", | |
| subfolder="exp", | |
| ) | |
| decoder_model = _get_nn_model_filename( | |
| repo_id=repo_id, | |
| filename=f"decoder-epoch-{epoch}-avg-{avg}.onnx", | |
| subfolder="exp", | |
| ) | |
| joiner_model = _get_nn_model_filename( | |
| repo_id=repo_id, | |
| filename=f"joiner-epoch-{epoch}-avg-{avg}.onnx", | |
| subfolder="exp", | |
| ) | |
| tokens = _get_token_filename(repo_id=repo_id, subfolder="data/lang_char") | |
| recognizer = sherpa_onnx.OfflineRecognizer.from_transducer( | |
| tokens=tokens, | |
| encoder=encoder_model, | |
| decoder=decoder_model, | |
| joiner=joiner_model, | |
| num_threads=2, | |
| sample_rate=16000, | |
| feature_dim=80, | |
| decoding_method=decoding_method, | |
| max_active_paths=num_active_paths, | |
| ) | |
| return recognizer | |
| def get_punct_model() -> sherpa_onnx.OfflinePunctuation: | |
| model = _get_nn_model_filename( | |
| repo_id="csukuangfj/sherpa-onnx-punct-ct-transformer-zh-en-vocab272727-2024-04-12", | |
| filename="model.onnx", | |
| subfolder=".", | |
| ) | |
| config = sherpa_onnx.OfflinePunctuationConfig( | |
| model=sherpa_onnx.OfflinePunctuationModelConfig(ct_transformer=model), | |
| ) | |
| punct = sherpa_onnx.OfflinePunctuation(config) | |
| return punct | |
| def _get_multi_zh_hans_pre_trained_model( | |
| repo_id: str, | |
| decoding_method: str, | |
| num_active_paths: int, | |
| ) -> sherpa_onnx.OfflineRecognizer: | |
| assert repo_id in ("zrjin/sherpa-onnx-zipformer-multi-zh-hans-2023-9-2",), repo_id | |
| encoder_model = _get_nn_model_filename( | |
| repo_id=repo_id, | |
| filename="encoder-epoch-20-avg-1.onnx", | |
| subfolder=".", | |
| ) | |
| decoder_model = _get_nn_model_filename( | |
| repo_id=repo_id, | |
| filename="decoder-epoch-20-avg-1.onnx", | |
| subfolder=".", | |
| ) | |
| joiner_model = _get_nn_model_filename( | |
| repo_id=repo_id, | |
| filename="joiner-epoch-20-avg-1.onnx", | |
| subfolder=".", | |
| ) | |
| tokens = _get_token_filename(repo_id=repo_id, subfolder=".") | |
| recognizer = sherpa_onnx.OfflineRecognizer.from_transducer( | |
| tokens=tokens, | |
| encoder=encoder_model, | |
| decoder=decoder_model, | |
| joiner=joiner_model, | |
| num_threads=2, | |
| sample_rate=16000, | |
| feature_dim=80, | |
| decoding_method=decoding_method, | |
| max_active_paths=num_active_paths, | |
| ) | |
| return recognizer | |
| chinese_dialect_models = { | |
| "csukuangfj/sherpa-onnx-telespeech-ctc-int8-zh-2024-06-04": _get_chinese_dialect_models, | |
| } | |
| chinese_models = { | |
| "csukuangfj/sherpa-onnx-paraformer-zh-2024-03-09": _get_paraformer_pre_trained_model, | |
| "luomingshuang/icefall_asr_wenetspeech_pruned_transducer_stateless2": _get_wenetspeech_pre_trained_model, # noqa | |
| "csukuangfj/sherpa-onnx-paraformer-zh-small-2024-03-09": _get_paraformer_pre_trained_model, | |
| "zrjin/sherpa-onnx-zipformer-multi-zh-hans-2023-9-2": _get_multi_zh_hans_pre_trained_model, # noqa | |
| "zrjin/icefall-asr-aishell-zipformer-large-2023-10-24": _get_aishell_pre_trained_model, # noqa | |
| "zrjin/icefall-asr-aishell-zipformer-small-2023-10-24": _get_aishell_pre_trained_model, # noqa | |
| "zrjin/icefall-asr-aishell-zipformer-2023-10-24": _get_aishell_pre_trained_model, # noqa | |
| "desh2608/icefall-asr-alimeeting-pruned-transducer-stateless7": _get_alimeeting_pre_trained_model, | |
| "yuekai/icefall-asr-aishell2-pruned-transducer-stateless5-A-2022-07-12": _get_aishell2_pretrained_model, # noqa | |
| "yuekai/icefall-asr-aishell2-pruned-transducer-stateless5-B-2022-07-12": _get_aishell2_pretrained_model, # noqa | |
| "luomingshuang/icefall_asr_aidatatang-200zh_pruned_transducer_stateless2": _get_aidatatang_200zh_pretrained_mode, # noqa | |
| "luomingshuang/icefall_asr_alimeeting_pruned_transducer_stateless2": _get_alimeeting_pre_trained_model, # noqa | |
| "csukuangfj/wenet-chinese-model": _get_wenet_model, | |
| # "csukuangfj/icefall-asr-wenetspeech-lstm-transducer-stateless-2022-10-14": _get_lstm_transducer_model, | |
| } | |
| english_models = { | |
| "whisper-tiny.en": _get_whisper_model, | |
| "moonshine-tiny": _get_moonshine_model, | |
| "moonshine-base": _get_moonshine_model, | |
| "whisper-base.en": _get_whisper_model, | |
| "whisper-small.en": _get_whisper_model, | |
| "csukuangfj/sherpa-onnx-nemo-parakeet_tdt_ctc_110m-en-36000": _get_sherpa_onnx_nemo_ctc_models, | |
| "csukuangfj/sherpa-onnx-nemo-parakeet_tdt_transducer_110m-en-36000": _get_sherpa_onnx_nemo_transducer_models, | |
| # "whisper-medium.en": _get_whisper_model, | |
| "csukuangfj/sherpa-onnx-zipformer-en-libriheavy-20230926-large": _get_sherpa_onnx_offline_zipformer_pre_trained_model, | |
| "csukuangfj/sherpa-onnx-zipformer-en-libriheavy-20230926-medium": _get_sherpa_onnx_offline_zipformer_pre_trained_model, | |
| "csukuangfj/sherpa-onnx-zipformer-en-libriheavy-20230926-small": _get_sherpa_onnx_offline_zipformer_pre_trained_model, | |
| "csukuangfj/sherpa-onnx-zipformer-en-libriheavy-20230830-large-punct-case": _get_sherpa_onnx_offline_zipformer_pre_trained_model, | |
| "csukuangfj/sherpa-onnx-zipformer-en-libriheavy-20230830-medium-punct-case": _get_sherpa_onnx_offline_zipformer_pre_trained_model, | |
| "csukuangfj/sherpa-onnx-zipformer-en-libriheavy-20230830-small-punct-case": _get_sherpa_onnx_offline_zipformer_pre_trained_model, | |
| "csukuangfj/sherpa-onnx-paraformer-en-2024-03-09": _get_paraformer_pre_trained_model, | |
| "yfyeung/icefall-asr-gigaspeech-zipformer-2023-10-17": _get_gigaspeech_pre_trained_model_onnx, # noqa | |
| "wgb14/icefall-asr-gigaspeech-pruned-transducer-stateless2": _get_gigaspeech_pre_trained_model, # noqa | |
| "yfyeung/icefall-asr-multidataset-pruned_transducer_stateless7-2023-05-04": _get_english_model, # noqa | |
| "yfyeung/icefall-asr-finetune-mux-pruned_transducer_stateless7-2023-05-19": _get_english_model, # noqa | |
| "WeijiZhuang/icefall-asr-librispeech-pruned-transducer-stateless8-2022-12-02": _get_english_model, # noqa | |
| "csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless8-2022-11-14": _get_english_model, # noqa | |
| "csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless7-2022-11-11": _get_english_model, # noqa | |
| "csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13": _get_english_model, # noqa | |
| "yujinqiu/sherpa-onnx-paraformer-en-2023-10-24": _get_paraformer_en_pre_trained_model, | |
| "Zengwei/icefall-asr-librispeech-zipformer-large-2023-05-16": _get_english_model, # noqa | |
| "Zengwei/icefall-asr-librispeech-zipformer-2023-05-15": _get_english_model, # noqa | |
| "Zengwei/icefall-asr-librispeech-zipformer-small-2023-05-16": _get_english_model, # noqa | |
| "videodanchik/icefall-asr-tedlium3-conformer-ctc2": _get_english_model, | |
| "pkufool/icefall_asr_librispeech_conformer_ctc": _get_english_model, | |
| "WayneWiser/icefall-asr-librispeech-conformer-ctc2-jit-bpe-500-2022-07-21": _get_english_model, | |
| "csukuangfj/wenet-english-model": _get_wenet_model, | |
| } | |
| multi_lingual_models = { | |
| "csukuangfj/sherpa-onnx-dolphin-base-ctc-multi-lang-int8-2025-04-02": _get_dolphin_ctc_models, | |
| "csukuangfj/sherpa-onnx-dolphin-small-ctc-multi-lang-int8-2025-04-02": _get_dolphin_ctc_models, | |
| "csukuangfj/sherpa-onnx-dolphin-base-ctc-multi-lang-2025-04-02": _get_dolphin_ctc_models, | |
| "csukuangfj/sherpa-onnx-dolphin-small-ctc-multi-lang-2025-04-02": _get_dolphin_ctc_models, | |
| } | |
| chinese_english_mixed_models = { | |
| "csukuangfj/sherpa-onnx-fire-red-asr-large-zh_en-2025-02-16": _get_fire_red_asr_models, | |
| "csukuangfj/sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20": _get_streaming_zipformer_pre_trained_model, | |
| "zrjin/icefall-asr-zipformer-multi-zh-en-2023-11-22": _get_chinese_english_mixed_model_onnx, | |
| "csukuangfj/sherpa-onnx-paraformer-zh-2023-03-28": _get_paraformer_pre_trained_model, | |
| "ptrnull/icefall-asr-conv-emformer-transducer-stateless2-zh": _get_chinese_english_mixed_model, | |
| "luomingshuang/icefall_asr_tal-csasr_pruned_transducer_stateless5": _get_chinese_english_mixed_model, # noqa | |
| } | |
| tibetan_models = { | |
| "syzym/icefall-asr-xbmu-amdo31-pruned-transducer-stateless7-2022-12-02": _get_tibetan_pre_trained_model, # noqa | |
| "syzym/icefall-asr-xbmu-amdo31-pruned-transducer-stateless5-2022-11-29": _get_tibetan_pre_trained_model, # noqa | |
| } | |
| arabic_models = { | |
| "AmirHussein/icefall-asr-mgb2-conformer_ctc-2022-27-06": _get_arabic_pre_trained_model, # noqa | |
| } | |
| german_models = { | |
| "csukuangfj/wav2vec2.0-torchaudio": _get_german_pre_trained_model, | |
| } | |
| french_models = { | |
| "shaojieli/sherpa-onnx-streaming-zipformer-fr-2023-04-14": _get_french_pre_trained_model, | |
| } | |
| japanese_models = { | |
| "reazon-research/reazonspeech-k2-v2": _get_offline_pre_trained_model, | |
| # "TeoWenShen/icefall-asr-csj-pruned-transducer-stateless7-streaming-230208-fluent": _get_japanese_pre_trained_model, | |
| # "TeoWenShen/icefall-asr-csj-pruned-transducer-stateless7-streaming-230208-disfluent": _get_japanese_pre_trained_model, | |
| } | |
| russian_models = { | |
| "csukuangfj/sherpa-onnx-nemo-transducer-giga-am-v2-russian-2025-04-19": _get_russian_pre_trained_model, | |
| "csukuangfj/sherpa-onnx-nemo-ctc-giga-am-v2-russian-2025-04-19": _get_russian_pre_trained_model_ctc, | |
| "csukuangfj/sherpa-onnx-nemo-transducer-giga-am-russian-2024-10-24": _get_russian_pre_trained_model, | |
| "csukuangfj/sherpa-onnx-nemo-ctc-giga-am-russian-2024-10-24": _get_russian_pre_trained_model_ctc, | |
| "alphacep/vosk-model-ru": _get_russian_pre_trained_model, | |
| "alphacep/vosk-model-small-ru": _get_russian_pre_trained_model, | |
| } | |
| chinese_cantonese_english_models = { | |
| "csukuangfj/sherpa-onnx-paraformer-trilingual-zh-cantonese-en": _get_paraformer_pre_trained_model, | |
| "csukuangfj/sherpa-onnx-streaming-paraformer-trilingual-zh-cantonese-en": _get_streaming_paraformer_zh_yue_en_pre_trained_model, | |
| } | |
| chinese_cantonese_english_japanese_korean_models = { | |
| "csukuangfj/sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17": _get_sense_voice_pre_trained_model, | |
| } | |
| cantonese_models = { | |
| "zrjin/icefall-asr-mdcc-zipformer-2024-03-11": _get_zrjin_cantonese_pre_trained_model, | |
| } | |
| korean_models = { | |
| "k2-fsa/sherpa-onnx-zipformer-korean-2024-06-24": _get_offline_pre_trained_model, | |
| "k2-fsa/sherpa-onnx-streaming-zipformer-korean-2024-06-16": _get_streaming_zipformer_pre_trained_model, | |
| } | |
| thai_models = { | |
| "yfyeung/icefall-asr-gigaspeech2-th-zipformer-2024-06-20": _get_yifan_thai_pretrained_model, | |
| } | |
| all_models = { | |
| **multi_lingual_models, | |
| **chinese_models, | |
| **english_models, | |
| **chinese_english_mixed_models, | |
| **chinese_cantonese_english_models, | |
| **chinese_cantonese_english_japanese_korean_models, | |
| **cantonese_models, | |
| **japanese_models, | |
| **tibetan_models, | |
| **arabic_models, | |
| **german_models, | |
| **french_models, | |
| **russian_models, | |
| **korean_models, | |
| **thai_models, | |
| } | |
| language_to_models = { | |
| "Multi-lingual (east aisa)": list(multi_lingual_models.keys()), | |
| "超多种中文方言": list(chinese_dialect_models.keys()), | |
| "Chinese": list(chinese_models.keys()), | |
| "English": list(english_models.keys()), | |
| "Chinese+English": list(chinese_english_mixed_models.keys()), | |
| "Chinese+English+Cantonese": list(chinese_cantonese_english_models.keys()), | |
| "Chinese+English+Cantonese+Japanese+Korean": list( | |
| chinese_cantonese_english_japanese_korean_models.keys() | |
| ), | |
| "Cantonese": list(cantonese_models.keys()), | |
| "Japanese": list(japanese_models.keys()), | |
| "Tibetan": list(tibetan_models.keys()), | |
| "Arabic": list(arabic_models.keys()), | |
| "German": list(german_models.keys()), | |
| "French": list(french_models.keys()), | |
| "Russian": list(russian_models.keys()), | |
| "Korean": list(korean_models.keys()), | |
| "Thai": list(thai_models.keys()), | |
| } | |