Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import openai | |
| from t2a import text_to_audio | |
| import joblib | |
| from sentence_transformers import SentenceTransformer | |
| import numpy as np | |
| reg = joblib.load('text_reg.joblib') | |
| model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') | |
| finetune = "davinci:ft-personal:autodrummer-v4-2022-11-01-22-44-58" | |
| def get_note_text(prompt): | |
| prompt = prompt + " ->" | |
| # get completion from finetune | |
| response = openai.Completion.create( | |
| engine=finetune, | |
| prompt=prompt, | |
| temperature=0.7, | |
| max_tokens=100, | |
| top_p=1, | |
| frequency_penalty=0, | |
| presence_penalty=0, | |
| stop=["###"] | |
| ) | |
| return response.choices[0].text.strip() | |
| def get_drummer_output(prompt, openai_api_key): | |
| openai.api_key = openai_api_key | |
| note_text = get_note_text(prompt) | |
| # note_text = note_text + " " + note_text | |
| # note_text = "k n k n k n k n s n h n k n s n k n k n k n k n k n k n h n k n n" | |
| prompt_enc = model.encode([prompt]) | |
| bpm = int(reg.predict(prompt_enc)[0]) + 20 | |
| print(bpm, "bpm", "notes are", note_text) | |
| audio = text_to_audio(note_text, bpm) | |
| # audio to numpy | |
| audio = np.array(audio.get_array_of_samples(), dtype=np.float32) | |
| return (96000, audio) | |
| iface = gr.Interface(fn=get_drummer_output, inputs=["text", "text"], outputs="audio") | |
| iface.launch() |