Spaces:
Runtime error
Runtime error
adding slider to the top results
Browse files- app.py +259 -226
- input_format.py +0 -1
app.py
CHANGED
|
@@ -1,17 +1,17 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import os
|
| 3 |
from transformers import AutoTokenizer, AutoModel
|
| 4 |
from sentence_transformers import SentenceTransformer
|
| 5 |
import pickle
|
| 6 |
import nltk
|
| 7 |
-
nltk.download('punkt') # tokenizer
|
| 8 |
-
nltk.download('averaged_perceptron_tagger') # postagger
|
| 9 |
import time
|
| 10 |
|
| 11 |
from input_format import *
|
| 12 |
from score import *
|
| 13 |
|
| 14 |
-
#
|
|
|
|
|
|
|
|
|
|
| 15 |
#torch.cuda.is_available = lambda : False # uncomment to test with CPU only
|
| 16 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 17 |
#pretrained_model = 'allenai/specter'
|
|
@@ -20,21 +20,25 @@ tokenizer = AutoTokenizer.from_pretrained(pretrained_model)
|
|
| 20 |
doc_model = AutoModel.from_pretrained(pretrained_model)
|
| 21 |
doc_model.to(device)
|
| 22 |
|
| 23 |
-
|
| 24 |
sent_model = doc_model # have the same model for document and sentence level
|
| 25 |
|
| 26 |
# OR specify different model for sentence level
|
| 27 |
#sent_model = SentenceTransformer('sentence-transformers/gtr-t5-base')
|
| 28 |
#sent_model.to(device)
|
| 29 |
|
|
|
|
|
|
|
|
|
|
| 30 |
def get_similar_paper(
|
| 31 |
title_input,
|
| 32 |
abstract_text_input,
|
| 33 |
author_id_input,
|
|
|
|
|
|
|
| 34 |
results={}, # this state variable will be updated and returned
|
| 35 |
-
):
|
| 36 |
progress = gr.Progress()
|
| 37 |
-
num_papers_show = 10 # number of top papers to show from the reviewer
|
| 38 |
if title_input == None:
|
| 39 |
title_input = '' # if no title is given, just focus on abstract.
|
| 40 |
print('retrieving similar papers...')
|
|
@@ -60,17 +64,18 @@ def get_similar_paper(
|
|
| 60 |
|
| 61 |
results = {
|
| 62 |
'name': name,
|
|
|
|
| 63 |
'titles': titles,
|
| 64 |
'abstracts': abstracts,
|
| 65 |
'urls': paper_urls,
|
| 66 |
'doc_scores': doc_scores
|
| 67 |
}
|
| 68 |
|
| 69 |
-
# Select top
|
| 70 |
-
titles = titles[:
|
| 71 |
-
abstracts = abstracts[:
|
| 72 |
-
doc_scores = doc_scores[:
|
| 73 |
-
paper_urls = paper_urls[:
|
| 74 |
|
| 75 |
display_title = ['[ %0.3f ] %s'%(s, t) for t, s in zip(titles, doc_scores)]
|
| 76 |
end = time.time()
|
|
@@ -90,8 +95,8 @@ def get_similar_paper(
|
|
| 90 |
tokenizer,
|
| 91 |
abstract_text_input,
|
| 92 |
ab,
|
| 93 |
-
K=None,
|
| 94 |
-
top_pair_num=
|
| 95 |
)
|
| 96 |
num_cand_sents = sent_ids.shape[1]
|
| 97 |
|
|
@@ -116,104 +121,136 @@ def get_similar_paper(
|
|
| 116 |
'top_pairs': top_pairs_info,
|
| 117 |
'url': url
|
| 118 |
}
|
| 119 |
-
|
| 120 |
end = time.time()
|
| 121 |
highlight_time = end - start
|
| 122 |
print('done in [%0.2f] seconds'%(highlight_time))
|
| 123 |
|
| 124 |
-
# debugging only
|
| 125 |
-
pickle.dump(results, open('info.pkl', 'wb'))
|
| 126 |
-
|
| 127 |
## Set up output elements
|
| 128 |
|
| 129 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
title = results[display_title[0]]['title'] # set default title as the top paper
|
| 131 |
url = results[display_title[0]]['url']
|
| 132 |
aff_score = results[display_title[0]]['doc_score']
|
| 133 |
title_out = """<a href="%s" target="_blank"><h5>%s</h5></a>"""%(url, title)
|
| 134 |
aff_score_out = '##### Affinity Score: %s'%aff_score
|
| 135 |
-
|
|
|
|
|
|
|
|
|
|
| 136 |
gr.update(choices=display_title, value=display_title[0], interactive=True), # set of papers (radio)
|
| 137 |
gr.update(choices=input_sentences, value=input_sentences[0], interactive=True), # submission sentences
|
| 138 |
gr.update(value=title_out), # paper_title
|
| 139 |
-
gr.update(value=aff_score_out) # affinity
|
|
|
|
|
|
|
| 140 |
]
|
| 141 |
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
for i in range(top_papers_show):
|
| 147 |
if i == 0:
|
| 148 |
-
|
| 149 |
-
gr.update(value="""<a href="%s" target="_blank"><h4>%s</h4></a>"""%(paper_urls[i], titles[i]), visible=True)
|
|
|
|
|
|
|
| 150 |
gr.update(value="""#### Affinity Score: %0.3f
|
| 151 |
-
|
| 152 |
<p>Measures how similar the paper's abstract is to the submission abstract.</p>
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
]
|
| 157 |
else:
|
| 158 |
-
|
| 159 |
-
gr.update(value="""<a href="%s" target="_blank"><h4>%s</h4></a>"""%(paper_urls[i], titles[i]), visible=True)
|
|
|
|
|
|
|
| 160 |
gr.update(value='#### Affinity Score: %0.3f'%doc_scores[i], visible=True) # document affinity
|
| 161 |
-
|
| 162 |
-
|
|
|
|
|
|
|
|
|
|
| 163 |
for j in range(top_num_info_show):
|
| 164 |
if i == 0 and j == 0:
|
| 165 |
-
|
|
|
|
| 166 |
gr.update(value="""Sentence Relevance:\n%0.3f
|
| 167 |
<div class="help-tip">
|
| 168 |
<p>Measures how similar the sentence pairs are.</p>
|
| 169 |
-
</div>"""%tp[j]['score'], visible=True)
|
| 170 |
-
|
| 171 |
-
tp[j]['query'],
|
| 172 |
-
tp[j]['candidate']['original'],
|
| 173 |
-
tp[j]['candidate']
|
| 174 |
-
]
|
| 175 |
else:
|
| 176 |
-
|
| 177 |
-
gr.update(value='Sentence Relevance:\n%0.3f'%tp[j]['score'], visible=True)
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 184 |
|
| 185 |
-
#
|
| 186 |
-
|
| 187 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 188 |
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
For each paper, two sentence pairs (one from the submission, one from the paper) with the highest relevance scores are shown.
|
| 193 |
-
|
| 194 |
-
**<span style="color:black;background-color:#65B5E3;">Blue highlights</span>**: phrases that appear in both sentences.
|
| 195 |
-
"""%(author_id_input, results['name']),
|
| 196 |
-
visible=True)] # result 1 description
|
| 197 |
|
| 198 |
-
|
| 199 |
|
| 200 |
-
# progress status
|
| 201 |
-
out += [gr.update(value='Done (in %0.1f seconds)'%(retrieval_time+highlight_time), visible=True)]
|
| 202 |
-
|
| 203 |
-
# result 2 description
|
| 204 |
-
desc = """
|
| 205 |
-
##### Click a paper by %s on the left (sorted by affinity scores), and a sentence from the submission on the right, to see which parts of the paper are relevant.
|
| 206 |
-
"""%results['name']
|
| 207 |
-
out += [gr.update(value=desc)]
|
| 208 |
-
|
| 209 |
-
# slider to control the number of highlights
|
| 210 |
-
out += [gr.update(value=1, maximum=len(sent_tokenize(abstracts[0])))]
|
| 211 |
-
|
| 212 |
-
# finally add the search results to pass on to the Gradio State varaible
|
| 213 |
-
out += [results]
|
| 214 |
-
|
| 215 |
-
return tuple(out)
|
| 216 |
-
|
| 217 |
def show_more(info):
|
| 218 |
# show the interactive part of the app
|
| 219 |
return (
|
|
@@ -290,6 +327,49 @@ def change_num_highlight(
|
|
| 290 |
else:
|
| 291 |
return
|
| 292 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 293 |
with gr.Blocks(css='style.css') as demo:
|
| 294 |
info = gr.State({}) # cached search results as a State variable shared throughout
|
| 295 |
|
|
@@ -310,15 +390,13 @@ A typical meta-reviewer workflow lacks supportive information on **what makes th
|
|
| 310 |
|
| 311 |
R2P2 provides more information about each reviewer. It searches for the **most relevant papers** among the reviewer's previous publications and **highlights relevant parts** within them.
|
| 312 |
"""
|
| 313 |
-
# TODO add instruction video link
|
| 314 |
# More details (video, addendum)
|
| 315 |
-
more_details_instruction = """Check out <a href="", target="_blank">this video</a> for a quick
|
| 316 |
|
| 317 |
gr.Markdown(general_instruction)
|
| 318 |
gr.HTML(more_details_instruction)
|
| 319 |
gr.Markdown("""---""")
|
| 320 |
|
| 321 |
-
|
| 322 |
### INPUT
|
| 323 |
with gr.Row() as input_row:
|
| 324 |
with gr.Column(scale=3):
|
|
@@ -350,97 +428,57 @@ R2P2 provides more information about each reviewer. It searches for the **most r
|
|
| 350 |
with gr.Row():
|
| 351 |
search_status = gr.Textbox(label='Search Status', interactive=False, visible=False)
|
| 352 |
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
#
|
| 356 |
-
## ONE BLOCK OF INFO FOR A SINGLE PAPER
|
| 357 |
-
## PAPER1
|
| 358 |
-
with gr.Row():
|
| 359 |
-
result1_desc = gr.Markdown(value='', visible=False)
|
| 360 |
with gr.Row():
|
| 361 |
-
with gr.Column(scale=
|
| 362 |
-
|
| 363 |
-
with gr.Column(scale=
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
with gr.Column(scale=4):
|
| 369 |
-
sent_pair_source1_1 = gr.Textbox(label='Sentence from Submission', visible=False)
|
| 370 |
-
sent_pair_source1_1_hl = gr.components.Interpretation(sent_pair_source1_1)
|
| 371 |
-
with gr.Column(scale=4):
|
| 372 |
-
sent_pair_candidate1_1 = gr.Textbox(label="Sentence from Reviewer's Paper", visible=False)
|
| 373 |
-
sent_pair_candidate1_1_hl = gr.components.Interpretation(sent_pair_candidate1_1)
|
| 374 |
-
with gr.Row() as rel1_2:
|
| 375 |
-
with gr.Column(scale=1):
|
| 376 |
-
sent_pair_score1_2 = gr.Markdown(interactive=False, value='', visible=False)
|
| 377 |
-
with gr.Column(scale=4):
|
| 378 |
-
sent_pair_source1_2 = gr.Textbox(label='Sentence from Submission', visible=False)
|
| 379 |
-
sent_pair_source1_2_hl = gr.components.Interpretation(sent_pair_source1_2)
|
| 380 |
-
with gr.Column(scale=4):
|
| 381 |
-
sent_pair_candidate1_2 = gr.Textbox(label="Sentence from Reviewer's Paper", visible=False)
|
| 382 |
-
sent_pair_candidate1_2_hl = gr.components.Interpretation(sent_pair_candidate1_2)
|
| 383 |
-
|
| 384 |
-
with gr.Row(visible=False) as demarc1:
|
| 385 |
-
gr.Markdown(
|
| 386 |
-
"""---"""
|
| 387 |
-
)
|
| 388 |
-
|
| 389 |
-
## PAPER 2
|
| 390 |
-
with gr.Row():
|
| 391 |
-
with gr.Column(scale=3):
|
| 392 |
-
paper_title2 = gr.Markdown(value='', visible=False)
|
| 393 |
-
with gr.Column(scale=1):
|
| 394 |
-
affinity2 = gr.Markdown(value='', visible=False)
|
| 395 |
-
with gr.Row() as rel2_1:
|
| 396 |
-
with gr.Column(scale=1):
|
| 397 |
-
sent_pair_score2_1 = gr.Markdown(interactive=False, value='', visible=False)
|
| 398 |
-
with gr.Column(scale=4):
|
| 399 |
-
sent_pair_source2_1 = gr.Textbox(label='Sentence from Submission', visible=False)
|
| 400 |
-
sent_pair_source2_1_hl = gr.components.Interpretation(sent_pair_source2_1)
|
| 401 |
-
with gr.Column(scale=4):
|
| 402 |
-
sent_pair_candidate2_1 = gr.Textbox(label="Sentence from Reviewer's Paper", visible=False)
|
| 403 |
-
sent_pair_candidate2_1_hl = gr.components.Interpretation(sent_pair_candidate2_1)
|
| 404 |
-
with gr.Row() as rel2_2:
|
| 405 |
-
with gr.Column(scale=1):
|
| 406 |
-
sent_pair_score2_2 = gr.Markdown(interactive=False, value='', visible=False)
|
| 407 |
-
with gr.Column(scale=4):
|
| 408 |
-
sent_pair_source2_2 = gr.Textbox(label='Sentence from Submission', visible=False)
|
| 409 |
-
sent_pair_source2_2_hl = gr.components.Interpretation(sent_pair_source2_2)
|
| 410 |
-
with gr.Column(scale=4):
|
| 411 |
-
sent_pair_candidate2_2 = gr.Textbox(label="Sentence from Reviewer's Paper", visible=False)
|
| 412 |
-
sent_pair_candidate2_2_hl = gr.components.Interpretation(sent_pair_candidate2_2)
|
| 413 |
-
|
| 414 |
-
with gr.Row(visible=False) as demarc2:
|
| 415 |
-
gr.Markdown(
|
| 416 |
-
"""---"""
|
| 417 |
-
)
|
| 418 |
-
|
| 419 |
-
## PAPER 3
|
| 420 |
-
with gr.Row():
|
| 421 |
-
with gr.Column(scale=3):
|
| 422 |
-
paper_title3 = gr.Markdown(value='', visible=False)
|
| 423 |
-
with gr.Column(scale=1):
|
| 424 |
-
affinity3 = gr.Markdown(value='', visible=False)
|
| 425 |
-
with gr.Row() as rel3_1:
|
| 426 |
-
with gr.Column(scale=1):
|
| 427 |
-
sent_pair_score3_1 = gr.Markdown(interactive=False, value='', visible=False)
|
| 428 |
-
with gr.Column(scale=4):
|
| 429 |
-
sent_pair_source3_1 = gr.Textbox(label='Sentence from Submission', visible=False)
|
| 430 |
-
sent_pair_source3_1_hl = gr.components.Interpretation(sent_pair_source3_1)
|
| 431 |
-
with gr.Column(scale=4):
|
| 432 |
-
sent_pair_candidate3_1 = gr.Textbox(label="Sentence from Reviewer's Paper", visible=False)
|
| 433 |
-
sent_pair_candidate3_1_hl = gr.components.Interpretation(sent_pair_candidate3_1)
|
| 434 |
-
with gr.Row() as rel3_2:
|
| 435 |
-
with gr.Column(scale=1):
|
| 436 |
-
sent_pair_score3_2 = gr.Markdown(interactive=False, value='', visible=False)
|
| 437 |
-
with gr.Column(scale=4):
|
| 438 |
-
sent_pair_source3_2 = gr.Textbox(label='Sentence from Submission', visible=False)
|
| 439 |
-
sent_pair_source3_2_hl = gr.components.Interpretation(sent_pair_source3_2)
|
| 440 |
-
with gr.Column(scale=4):
|
| 441 |
-
sent_pair_candidate3_2 = gr.Textbox(label="Sentence from Reviewer's Paper", visible=False)
|
| 442 |
-
sent_pair_candidate3_2_hl = gr.components.Interpretation(sent_pair_candidate3_2)
|
| 443 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 444 |
## Show more button
|
| 445 |
with gr.Row():
|
| 446 |
see_more_rel_btn = gr.Button('Explore more', visible=False)
|
|
@@ -499,74 +537,47 @@ R2P2 provides more information about each reviewer. It searches for the **most r
|
|
| 499 |
# highlighted text from paper
|
| 500 |
highlight = gr.components.Interpretation(paper_abstract)
|
| 501 |
|
| 502 |
-
|
| 503 |
### EVENT LISTENERS
|
| 504 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 505 |
compute_btn.click(
|
| 506 |
fn=show_status,
|
| 507 |
inputs=[],
|
| 508 |
outputs=search_status
|
| 509 |
)
|
| 510 |
|
| 511 |
-
# retrieve similar papers and show top results
|
| 512 |
compute_btn.click(
|
| 513 |
fn=get_similar_paper,
|
| 514 |
inputs=[
|
| 515 |
title_input,
|
| 516 |
abstract_text_input,
|
| 517 |
author_id_input,
|
|
|
|
|
|
|
| 518 |
info
|
| 519 |
],
|
| 520 |
-
outputs=[
|
| 521 |
-
selected_papers_radio, # list of papers for show more section
|
| 522 |
-
source_sentences, # list of sentences for show more section
|
| 523 |
-
paper_title, # paper title for show more section
|
| 524 |
-
affinity, # paper affinity for show more section
|
| 525 |
-
paper_title1, # paper info
|
| 526 |
-
affinity1,
|
| 527 |
-
sent_pair_score1_1,
|
| 528 |
-
sent_pair_source1_1,
|
| 529 |
-
sent_pair_source1_1_hl,
|
| 530 |
-
sent_pair_candidate1_1,
|
| 531 |
-
sent_pair_candidate1_1_hl,
|
| 532 |
-
sent_pair_score1_2,
|
| 533 |
-
sent_pair_source1_2,
|
| 534 |
-
sent_pair_source1_2_hl,
|
| 535 |
-
sent_pair_candidate1_2,
|
| 536 |
-
sent_pair_candidate1_2_hl,
|
| 537 |
-
paper_title2,
|
| 538 |
-
affinity2,
|
| 539 |
-
sent_pair_score2_1,
|
| 540 |
-
sent_pair_source2_1,
|
| 541 |
-
sent_pair_source2_1_hl,
|
| 542 |
-
sent_pair_candidate2_1,
|
| 543 |
-
sent_pair_candidate2_1_hl,
|
| 544 |
-
sent_pair_score2_2,
|
| 545 |
-
sent_pair_source2_2,
|
| 546 |
-
sent_pair_source2_2_hl,
|
| 547 |
-
sent_pair_candidate2_2,
|
| 548 |
-
sent_pair_candidate2_2_hl,
|
| 549 |
-
paper_title3,
|
| 550 |
-
affinity3,
|
| 551 |
-
sent_pair_score3_1,
|
| 552 |
-
sent_pair_source3_1,
|
| 553 |
-
sent_pair_source3_1_hl,
|
| 554 |
-
sent_pair_candidate3_1,
|
| 555 |
-
sent_pair_candidate3_1_hl,
|
| 556 |
-
sent_pair_score3_2,
|
| 557 |
-
sent_pair_source3_2,
|
| 558 |
-
sent_pair_source3_2_hl,
|
| 559 |
-
sent_pair_candidate3_2,
|
| 560 |
-
sent_pair_candidate3_2_hl,
|
| 561 |
-
see_more_rel_btn,
|
| 562 |
-
result1_desc,
|
| 563 |
-
demarc1,
|
| 564 |
-
demarc2,
|
| 565 |
-
search_status,
|
| 566 |
-
result2_desc,
|
| 567 |
-
highlight_slider,
|
| 568 |
-
info,
|
| 569 |
-
],
|
| 570 |
show_progress=True,
|
| 571 |
scroll_to_output=True
|
| 572 |
)
|
|
@@ -617,6 +628,7 @@ R2P2 provides more information about each reviewer. It searches for the **most r
|
|
| 617 |
]
|
| 618 |
)
|
| 619 |
|
|
|
|
| 620 |
highlight_slider.change(
|
| 621 |
fn=change_num_highlight,
|
| 622 |
inputs=[
|
|
@@ -630,6 +642,27 @@ R2P2 provides more information about each reviewer. It searches for the **most r
|
|
| 630 |
]
|
| 631 |
)
|
| 632 |
|
| 633 |
-
|
| 634 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 635 |
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
from transformers import AutoTokenizer, AutoModel
|
| 3 |
from sentence_transformers import SentenceTransformer
|
| 4 |
import pickle
|
| 5 |
import nltk
|
|
|
|
|
|
|
| 6 |
import time
|
| 7 |
|
| 8 |
from input_format import *
|
| 9 |
from score import *
|
| 10 |
|
| 11 |
+
nltk.download('punkt') # tokenizer
|
| 12 |
+
nltk.download('averaged_perceptron_tagger') # postagger
|
| 13 |
+
|
| 14 |
+
## load document scoring model
|
| 15 |
#torch.cuda.is_available = lambda : False # uncomment to test with CPU only
|
| 16 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 17 |
#pretrained_model = 'allenai/specter'
|
|
|
|
| 20 |
doc_model = AutoModel.from_pretrained(pretrained_model)
|
| 21 |
doc_model.to(device)
|
| 22 |
|
| 23 |
+
## load sentence model
|
| 24 |
sent_model = doc_model # have the same model for document and sentence level
|
| 25 |
|
| 26 |
# OR specify different model for sentence level
|
| 27 |
#sent_model = SentenceTransformer('sentence-transformers/gtr-t5-base')
|
| 28 |
#sent_model.to(device)
|
| 29 |
|
| 30 |
+
NUM_PAPERS_SHOW = 5 # max number of top papers to show from the reviewer upfront
|
| 31 |
+
NUM_PAIRS_SHOW = 5 # max number of top sentence pairs to show
|
| 32 |
+
|
| 33 |
def get_similar_paper(
|
| 34 |
title_input,
|
| 35 |
abstract_text_input,
|
| 36 |
author_id_input,
|
| 37 |
+
top_paper_slider,
|
| 38 |
+
top_pair_slider,
|
| 39 |
results={}, # this state variable will be updated and returned
|
| 40 |
+
):
|
| 41 |
progress = gr.Progress()
|
|
|
|
| 42 |
if title_input == None:
|
| 43 |
title_input = '' # if no title is given, just focus on abstract.
|
| 44 |
print('retrieving similar papers...')
|
|
|
|
| 64 |
|
| 65 |
results = {
|
| 66 |
'name': name,
|
| 67 |
+
'author_url': author_id_input,
|
| 68 |
'titles': titles,
|
| 69 |
'abstracts': abstracts,
|
| 70 |
'urls': paper_urls,
|
| 71 |
'doc_scores': doc_scores
|
| 72 |
}
|
| 73 |
|
| 74 |
+
# Select top 10 papers to show
|
| 75 |
+
titles = titles[:10]
|
| 76 |
+
abstracts = abstracts[:10]
|
| 77 |
+
doc_scores = doc_scores[:10]
|
| 78 |
+
paper_urls = paper_urls[:10]
|
| 79 |
|
| 80 |
display_title = ['[ %0.3f ] %s'%(s, t) for t, s in zip(titles, doc_scores)]
|
| 81 |
end = time.time()
|
|
|
|
| 95 |
tokenizer,
|
| 96 |
abstract_text_input,
|
| 97 |
ab,
|
| 98 |
+
K=None,
|
| 99 |
+
top_pair_num=10, # top ten sentence pairs at max to show upfront
|
| 100 |
)
|
| 101 |
num_cand_sents = sent_ids.shape[1]
|
| 102 |
|
|
|
|
| 121 |
'top_pairs': top_pairs_info,
|
| 122 |
'url': url
|
| 123 |
}
|
| 124 |
+
|
| 125 |
end = time.time()
|
| 126 |
highlight_time = end - start
|
| 127 |
print('done in [%0.2f] seconds'%(highlight_time))
|
| 128 |
|
|
|
|
|
|
|
|
|
|
| 129 |
## Set up output elements
|
| 130 |
|
| 131 |
+
## Components for Initial Part
|
| 132 |
+
result1_desc_value = """
|
| 133 |
+
<h3>Top %d relevant papers by the reviewer <a href="%s" target="_blank">%s</a></h3>
|
| 134 |
+
|
| 135 |
+
For each paper, top %d sentence pairs (one from the submission, one from the paper) with the highest relevance scores are shown.
|
| 136 |
+
|
| 137 |
+
**<span style="color:black;background-color:#65B5E3;">Blue highlights</span>**: phrases that appear in both sentences.
|
| 138 |
+
"""%(int(top_paper_slider), author_id_input, results['name'], int(top_pair_slider))
|
| 139 |
+
|
| 140 |
+
out1 = [
|
| 141 |
+
gr.update(visible=True), # Explore more button
|
| 142 |
+
gr.update(value=result1_desc_value, visible=True), # result 1 description
|
| 143 |
+
gr.update(value='Done (in %0.1f seconds)'%(retrieval_time+highlight_time), visible=True), # search status
|
| 144 |
+
gr.update(visible=True), # top paper slider
|
| 145 |
+
gr.update(visible=True) # top pair slider
|
| 146 |
+
]
|
| 147 |
+
|
| 148 |
+
### Components for Results in Initial Part
|
| 149 |
+
top_papers_show = int(top_paper_slider) # number of top papers to show upfront
|
| 150 |
+
top_num_info_show = int(top_pair_slider) # number of sentence pairs from each paper to show upfront
|
| 151 |
+
output = setup_outputs(results, top_papers_show, top_num_info_show)
|
| 152 |
+
out2 = []
|
| 153 |
+
for x in output:
|
| 154 |
+
out2 += x
|
| 155 |
+
|
| 156 |
+
### Components for Explore More Section
|
| 157 |
+
# list of top papers, sentences to select from, paper_title, affinity
|
| 158 |
title = results[display_title[0]]['title'] # set default title as the top paper
|
| 159 |
url = results[display_title[0]]['url']
|
| 160 |
aff_score = results[display_title[0]]['doc_score']
|
| 161 |
title_out = """<a href="%s" target="_blank"><h5>%s</h5></a>"""%(url, title)
|
| 162 |
aff_score_out = '##### Affinity Score: %s'%aff_score
|
| 163 |
+
result2_desc_value = """
|
| 164 |
+
##### Click a paper by %s (left, sorted by affinity scores), and a sentence from the submission (center), to see which parts of the paper are relevant (right).
|
| 165 |
+
"""%results['name']
|
| 166 |
+
out3 = [
|
| 167 |
gr.update(choices=display_title, value=display_title[0], interactive=True), # set of papers (radio)
|
| 168 |
gr.update(choices=input_sentences, value=input_sentences[0], interactive=True), # submission sentences
|
| 169 |
gr.update(value=title_out), # paper_title
|
| 170 |
+
gr.update(value=aff_score_out), # affinity
|
| 171 |
+
gr.update(value=result2_desc_value), # result 2 description (show more section)
|
| 172 |
+
gr.update(value=1, maximum=len(sent_tokenize(abstracts[0]))), # highlight slider to control
|
| 173 |
]
|
| 174 |
|
| 175 |
+
## Return by adding the State variable info
|
| 176 |
+
return out1 + out2 + out3 + [results]
|
| 177 |
+
|
| 178 |
+
def setup_outputs(info, top_papers_show, top_num_info_show):
|
| 179 |
+
titles = info['titles']
|
| 180 |
+
doc_scores = info['doc_scores']
|
| 181 |
+
paper_urls = info['urls']
|
| 182 |
+
display_title = ['[ %0.3f ] %s'%(s, t) for t, s in zip(info['titles'], info['doc_scores'])]
|
| 183 |
+
title = []
|
| 184 |
+
affinity = []
|
| 185 |
+
sent_pair_score = []
|
| 186 |
+
sent_text_query = []
|
| 187 |
+
sent_text_candidate = []
|
| 188 |
+
sent_hl_query = []
|
| 189 |
+
sent_hl_candidate = []
|
| 190 |
+
demarc_lines = []
|
| 191 |
for i in range(top_papers_show):
|
| 192 |
if i == 0:
|
| 193 |
+
title.append(
|
| 194 |
+
gr.update(value="""<a href="%s" target="_blank"><h4>%s</h4></a>"""%(paper_urls[i], titles[i]), visible=True)
|
| 195 |
+
)
|
| 196 |
+
affinity.append(
|
| 197 |
gr.update(value="""#### Affinity Score: %0.3f
|
| 198 |
+
<div class="help-tip">
|
| 199 |
<p>Measures how similar the paper's abstract is to the submission abstract.</p>
|
| 200 |
+
</div>
|
| 201 |
+
"""%doc_scores[i], visible=True) # document affinity
|
| 202 |
+
)
|
|
|
|
| 203 |
else:
|
| 204 |
+
title.append(
|
| 205 |
+
gr.update(value="""<a href="%s" target="_blank"><h4>%s</h4></a>"""%(paper_urls[i], titles[i]), visible=True)
|
| 206 |
+
)
|
| 207 |
+
affinity.append(
|
| 208 |
gr.update(value='#### Affinity Score: %0.3f'%doc_scores[i], visible=True) # document affinity
|
| 209 |
+
)
|
| 210 |
+
demarc_lines.append(gr.Markdown.update(visible=True))
|
| 211 |
+
|
| 212 |
+
# fill in the rest as
|
| 213 |
+
tp = info[display_title[i]]['top_pairs']
|
| 214 |
for j in range(top_num_info_show):
|
| 215 |
if i == 0 and j == 0:
|
| 216 |
+
# for the first entry add help tip
|
| 217 |
+
sent_pair_score.append(
|
| 218 |
gr.update(value="""Sentence Relevance:\n%0.3f
|
| 219 |
<div class="help-tip">
|
| 220 |
<p>Measures how similar the sentence pairs are.</p>
|
| 221 |
+
</div>"""%tp[j]['score'], visible=True)
|
| 222 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 223 |
else:
|
| 224 |
+
sent_pair_score.append(
|
| 225 |
+
gr.Textbox.update(value='Sentence Relevance:\n%0.3f'%tp[j]['score'], visible=True)
|
| 226 |
+
)
|
| 227 |
+
sent_text_query.append(gr.Textbox.update(tp[j]['query']['original']))
|
| 228 |
+
sent_text_candidate.append(gr.Textbox.update(tp[j]['candidate']['original']))
|
| 229 |
+
sent_hl_query.append(tp[j]['query'])
|
| 230 |
+
sent_hl_candidate.append(tp[j]['candidate'])
|
| 231 |
+
#row2.append(gr.update(visible=True))
|
| 232 |
+
sent_pair_score += [gr.Markdown.update(visible=False)] * (NUM_PAIRS_SHOW - top_num_info_show)
|
| 233 |
+
sent_text_query += [gr.Textbox.update(value='', visible=False)] * (NUM_PAIRS_SHOW - top_num_info_show)
|
| 234 |
+
sent_text_candidate += [gr.Textbox.update(value='', visible=False)] * (NUM_PAIRS_SHOW - top_num_info_show)
|
| 235 |
+
sent_hl_query += [None] * (NUM_PAIRS_SHOW - top_num_info_show)
|
| 236 |
+
sent_hl_candidate += [None] * (NUM_PAIRS_SHOW - top_num_info_show)
|
| 237 |
|
| 238 |
+
# mark others not visible
|
| 239 |
+
title += [gr.Markdown.update(visible=False)] * (NUM_PAPERS_SHOW - top_papers_show)
|
| 240 |
+
affinity += [gr.Markdown.update(visible=False)] * (NUM_PAPERS_SHOW - top_papers_show)
|
| 241 |
+
demarc_lines += [gr.Markdown.update(visible=False)] * (NUM_PAPERS_SHOW - top_papers_show)
|
| 242 |
+
sent_pair_score += [gr.Markdown.update(visible=False)] * (NUM_PAPERS_SHOW - top_papers_show) * NUM_PAIRS_SHOW
|
| 243 |
+
sent_text_query += [gr.Textbox.update(value='', visible=False)] * (NUM_PAPERS_SHOW - top_papers_show) * NUM_PAIRS_SHOW
|
| 244 |
+
sent_text_candidate += [gr.Textbox.update(value='', visible=False)] * (NUM_PAPERS_SHOW - top_papers_show) * NUM_PAIRS_SHOW
|
| 245 |
+
sent_hl_query += [None] * (NUM_PAPERS_SHOW - top_papers_show) * NUM_PAIRS_SHOW
|
| 246 |
+
sent_hl_candidate += [None] * (NUM_PAPERS_SHOW - top_papers_show) * NUM_PAIRS_SHOW
|
| 247 |
|
| 248 |
+
assert(len(title) == NUM_PAPERS_SHOW)
|
| 249 |
+
assert(len(affinity) == NUM_PAPERS_SHOW)
|
| 250 |
+
assert(len(sent_pair_score) == NUM_PAIRS_SHOW * NUM_PAPERS_SHOW)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 251 |
|
| 252 |
+
return title, affinity, demarc_lines, sent_pair_score, sent_text_query, sent_text_candidate, sent_hl_query, sent_hl_candidate
|
| 253 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 254 |
def show_more(info):
|
| 255 |
# show the interactive part of the app
|
| 256 |
return (
|
|
|
|
| 327 |
else:
|
| 328 |
return
|
| 329 |
|
| 330 |
+
def change_top_output(top_paper_slider, top_pair_slider, info={}):
|
| 331 |
+
top_papers_show = int(top_paper_slider)
|
| 332 |
+
top_num_info_show = int(top_pair_slider)
|
| 333 |
+
|
| 334 |
+
result1_desc_value = """
|
| 335 |
+
<h3>Top %d relevant papers by the reviewer <a href="%s" target="_blank">%s</a></h3>
|
| 336 |
+
|
| 337 |
+
For each paper, top %d sentence pairs (one from the submission, one from the paper) with the highest relevance scores are shown.
|
| 338 |
+
|
| 339 |
+
**<span style="color:black;background-color:#65B5E3;">Blue highlights</span>**: phrases that appear in both sentences.
|
| 340 |
+
"""%(int(top_paper_slider), info['author_url'], info['name'], int(top_pair_slider))
|
| 341 |
+
if len(info.keys()) != 0:
|
| 342 |
+
tmp = setup_outputs(info, top_papers_show, top_num_info_show)
|
| 343 |
+
x = []
|
| 344 |
+
for t in tmp:
|
| 345 |
+
x += t
|
| 346 |
+
return x + [gr.update(value=result1_desc_value)]
|
| 347 |
+
else:
|
| 348 |
+
return
|
| 349 |
+
|
| 350 |
+
def reinit_hl(top_paper_slider, top_pair_slider, *args):
|
| 351 |
+
args = list(args)
|
| 352 |
+
base = 3*NUM_PAPERS_SHOW+NUM_PAPERS_SHOW*NUM_PAIRS_SHOW
|
| 353 |
+
increment = NUM_PAPERS_SHOW*NUM_PAIRS_SHOW
|
| 354 |
+
text_query = args[base:base+increment]
|
| 355 |
+
text_candidate = args[base+increment:base+2*increment]
|
| 356 |
+
hl_query = args[base+2*increment:base+3*increment]
|
| 357 |
+
hl_candidate = args[base+3*increment:base+4*increment]
|
| 358 |
+
for i in range(int(top_paper_slider)):
|
| 359 |
+
for j in range(int(top_pair_slider),NUM_PAIRS_SHOW):
|
| 360 |
+
hl_query[i*NUM_PAIRS_SHOW+j] = gr.components.Interpretation(text_query[i*NUM_PAIRS_SHOW+j])
|
| 361 |
+
hl_candidate[i*NUM_PAIRS_SHOW+j] = gr.components.Interpretation(text_candidate[i*NUM_PAIRS_SHOW+j])
|
| 362 |
+
for i in range(int(top_paper_slider),NUM_PAPERS_SHOW):
|
| 363 |
+
for j in range(NUM_PAPERS_SHOW):
|
| 364 |
+
hl_query[i*NUM_PAIRS_SHOW+j] = gr.components.Interpretation(text_query[i*NUM_PAIRS_SHOW+j])
|
| 365 |
+
hl_candidate[i*NUM_PAIRS_SHOW+j] = gr.components.Interpretation(text_candidate[i*NUM_PAIRS_SHOW+j])
|
| 366 |
+
|
| 367 |
+
args[base:base+increment] = text_query
|
| 368 |
+
args[base+increment:base+2*increment] = text_candidate
|
| 369 |
+
args[base+2*increment:base+3*increment] = hl_query
|
| 370 |
+
args[base+3*increment:base+4*increment] = hl_candidate
|
| 371 |
+
return args
|
| 372 |
+
|
| 373 |
with gr.Blocks(css='style.css') as demo:
|
| 374 |
info = gr.State({}) # cached search results as a State variable shared throughout
|
| 375 |
|
|
|
|
| 390 |
|
| 391 |
R2P2 provides more information about each reviewer. It searches for the **most relevant papers** among the reviewer's previous publications and **highlights relevant parts** within them.
|
| 392 |
"""
|
|
|
|
| 393 |
# More details (video, addendum)
|
| 394 |
+
more_details_instruction = """Check out <a href="https://drive.google.com/file/d/1Ex_-cOplBitO7riNGliecFc8H3chXUN-/view?usp=share_link", target="_blank">this video</a> for a quick introduction of what R2P2 is and how it can help. You can find more details <a href="file/details.html", target="_blank">here</a>, along with our privacy policy and disclaimer."""
|
| 395 |
|
| 396 |
gr.Markdown(general_instruction)
|
| 397 |
gr.HTML(more_details_instruction)
|
| 398 |
gr.Markdown("""---""")
|
| 399 |
|
|
|
|
| 400 |
### INPUT
|
| 401 |
with gr.Row() as input_row:
|
| 402 |
with gr.Column(scale=3):
|
|
|
|
| 428 |
with gr.Row():
|
| 429 |
search_status = gr.Textbox(label='Search Status', interactive=False, visible=False)
|
| 430 |
|
| 431 |
+
### OVERVIEW RESULTS
|
| 432 |
+
# Paper title, score, and top-ranking sentence pairs
|
| 433 |
+
# a knob for controlling the number of output displayed
|
|
|
|
|
|
|
|
|
|
|
|
|
| 434 |
with gr.Row():
|
| 435 |
+
with gr.Column(scale=5):
|
| 436 |
+
result1_desc = gr.Markdown(value='', visible=False)
|
| 437 |
+
with gr.Column(scale=2):
|
| 438 |
+
with gr.Row():
|
| 439 |
+
top_paper_slider = gr.Slider(label='Top-K Papers by the Reviewer', value=3, minimum=3, step=1, maximum=NUM_PAPERS_SHOW, visible=False)
|
| 440 |
+
with gr.Row():
|
| 441 |
+
top_pair_slider = gr.Slider(label='Top-K Sentence Pairs per Paper', value=2, minimum=2, step=1, maximum=NUM_PAIRS_SHOW, visible=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 442 |
|
| 443 |
+
paper_title_up = []
|
| 444 |
+
paper_affinity_up = []
|
| 445 |
+
sent_pair_score = []
|
| 446 |
+
sent_text_query = []
|
| 447 |
+
sent_text_candidate = []
|
| 448 |
+
sent_hl_query = []
|
| 449 |
+
sent_hl_candidate = []
|
| 450 |
+
demarc_lines = []
|
| 451 |
+
|
| 452 |
+
row_elems1 = []
|
| 453 |
+
row_elems2 = []
|
| 454 |
+
|
| 455 |
+
for i in range(NUM_PAPERS_SHOW):
|
| 456 |
+
with gr.Row():
|
| 457 |
+
with gr.Column(scale=3):
|
| 458 |
+
tt = gr.Markdown(value='', visible=False)
|
| 459 |
+
paper_title_up.append(tt)
|
| 460 |
+
with gr.Column(scale=1):
|
| 461 |
+
aff = gr.Markdown(value='', visible=False)
|
| 462 |
+
paper_affinity_up.append(aff)
|
| 463 |
+
for j in range(NUM_PAIRS_SHOW):
|
| 464 |
+
with gr.Row():
|
| 465 |
+
with gr.Column(scale=1):
|
| 466 |
+
sps = gr.Markdown(value='', visible=False)
|
| 467 |
+
sent_pair_score.append(sps)
|
| 468 |
+
with gr.Column(scale=5):
|
| 469 |
+
stq = gr.Textbox(label='Sentence from Submission', visible=False)
|
| 470 |
+
shq = gr.components.Interpretation(stq, visible=False)
|
| 471 |
+
sent_text_query.append(stq)
|
| 472 |
+
sent_hl_query.append(shq)
|
| 473 |
+
with gr.Column(scale=5):
|
| 474 |
+
stc = gr.Textbox(label="Sentence from Reviewer's Paper", visible=False)
|
| 475 |
+
shc = gr.components.Interpretation(stc, visible=False)
|
| 476 |
+
sent_text_candidate.append(stc)
|
| 477 |
+
sent_hl_candidate.append(shc)
|
| 478 |
+
with gr.Row():
|
| 479 |
+
dml = gr.Markdown("""---""", visible=False)
|
| 480 |
+
demarc_lines.append(dml)
|
| 481 |
+
|
| 482 |
## Show more button
|
| 483 |
with gr.Row():
|
| 484 |
see_more_rel_btn = gr.Button('Explore more', visible=False)
|
|
|
|
| 537 |
# highlighted text from paper
|
| 538 |
highlight = gr.components.Interpretation(paper_abstract)
|
| 539 |
|
|
|
|
| 540 |
### EVENT LISTENERS
|
| 541 |
|
| 542 |
+
# components to work with
|
| 543 |
+
init_components = [
|
| 544 |
+
see_more_rel_btn, # explore more button
|
| 545 |
+
result1_desc, # description for first results
|
| 546 |
+
search_status, # search status
|
| 547 |
+
top_paper_slider,
|
| 548 |
+
top_pair_slider
|
| 549 |
+
]
|
| 550 |
+
|
| 551 |
+
init_result_components = \
|
| 552 |
+
paper_title_up + paper_affinity_up + demarc_lines + sent_pair_score + \
|
| 553 |
+
sent_text_query + sent_text_candidate + sent_hl_query + sent_hl_candidate
|
| 554 |
+
|
| 555 |
+
explore_more_components = [
|
| 556 |
+
selected_papers_radio, # list of papers for show more section
|
| 557 |
+
source_sentences, # list of sentences for show more section
|
| 558 |
+
paper_title, # paper title for show more section
|
| 559 |
+
affinity, # affinity for show more section
|
| 560 |
+
result2_desc, # description for explore more
|
| 561 |
+
highlight_slider, # highlight slider
|
| 562 |
+
]
|
| 563 |
+
|
| 564 |
compute_btn.click(
|
| 565 |
fn=show_status,
|
| 566 |
inputs=[],
|
| 567 |
outputs=search_status
|
| 568 |
)
|
| 569 |
|
|
|
|
| 570 |
compute_btn.click(
|
| 571 |
fn=get_similar_paper,
|
| 572 |
inputs=[
|
| 573 |
title_input,
|
| 574 |
abstract_text_input,
|
| 575 |
author_id_input,
|
| 576 |
+
top_paper_slider,
|
| 577 |
+
top_pair_slider,
|
| 578 |
info
|
| 579 |
],
|
| 580 |
+
outputs=init_components + init_result_components + explore_more_components + [info],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 581 |
show_progress=True,
|
| 582 |
scroll_to_output=True
|
| 583 |
)
|
|
|
|
| 628 |
]
|
| 629 |
)
|
| 630 |
|
| 631 |
+
# change number of higlights to show
|
| 632 |
highlight_slider.change(
|
| 633 |
fn=change_num_highlight,
|
| 634 |
inputs=[
|
|
|
|
| 642 |
]
|
| 643 |
)
|
| 644 |
|
| 645 |
+
# change number of top papers to show initially
|
| 646 |
+
top_paper_slider.change(
|
| 647 |
+
fn=change_top_output,
|
| 648 |
+
inputs=[
|
| 649 |
+
top_paper_slider,
|
| 650 |
+
top_pair_slider,
|
| 651 |
+
info
|
| 652 |
+
],
|
| 653 |
+
outputs=init_result_components+[result1_desc]
|
| 654 |
+
)
|
| 655 |
+
|
| 656 |
+
# change number of top sentence pairs to show initially
|
| 657 |
+
top_pair_slider.change(
|
| 658 |
+
fn=change_top_output,
|
| 659 |
+
inputs=[
|
| 660 |
+
top_paper_slider,
|
| 661 |
+
top_pair_slider,
|
| 662 |
+
info
|
| 663 |
+
],
|
| 664 |
+
outputs=init_result_components+[result1_desc]
|
| 665 |
+
)
|
| 666 |
|
| 667 |
+
if __name__ == "__main__":
|
| 668 |
+
demo.queue().launch() # add ?__theme=light to force light mode
|
input_format.py
CHANGED
|
@@ -1,4 +1,3 @@
|
|
| 1 |
-
import numpy as np
|
| 2 |
from pypdf import PdfReader
|
| 3 |
from urllib.parse import urlparse
|
| 4 |
import requests
|
|
|
|
|
|
|
| 1 |
from pypdf import PdfReader
|
| 2 |
from urllib.parse import urlparse
|
| 3 |
import requests
|