Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import pandas as pd | |
| from huggingface_hub import HfApi | |
| from collections import defaultdict | |
| # ------------------------------------------------------ | |
| # Get spaces with more details | |
| api = HfApi() | |
| spaces = api.list_spaces(limit=60000) # Limiting to 60000 for now | |
| # Create a DataFrame | |
| data = [] | |
| for space in spaces: | |
| data.append({ | |
| 'id': space.id, | |
| 'title': space.id.split('/')[-1], | |
| 'author': space.author if space.author else space.id.split('/')[0], | |
| 'likes': space.likes, | |
| 'tags': space.tags if hasattr(space, 'tags') else [], | |
| }) | |
| df = pd.DataFrame(data) | |
| print("Total spaces collected:", len(df)) | |
| print("\nSample of the data:") | |
| print(df.head()) | |
| # ------------------------------------------------------ | |
| # Define categories and their keywords | |
| categories = { | |
| 'Text-to-Speech': ['tts', 'speech', 'voice', 'audio', 'kokoro'], | |
| 'Transcription': ['transcribe', 'transcription'], | |
| 'Agents': ['agent', 'agents', 'smol', 'multi-step', 'autobot', 'autoGPT' 'agentic'], | |
| 'Image Gen/Editing': ['stable-diffusion', 'diffusion', 'flux', 'dalle', 'CLIP', | |
| 'comic', 'gan', 'sdxl', 'pic', 'img', 'stable', 'midjourney', | |
| 'diffusion', 'image', 'ControlNet', 'Control Net', 'dreambooth', 'blip', 'LoRA', 'img2img', 'style', 'art'], | |
| 'Video': ['video', 'animation', 'motion', 'sora'], | |
| 'Face/Portrait': ['face', 'portrait', 'gaze', 'facial'], | |
| 'Chat/LLM': ['chat', 'llm', 'gpt', 'llama', 'text', 'language'], | |
| '3D': ['3d', 'mesh', 'point-cloud', 'depth'], | |
| 'Audio': ['audio', 'tts', 'music', 'whisper', 'sound', 'voice'], | |
| 'Vision': ['vision', 'detection', 'recognition', 'classifier'], | |
| 'CLIP': ['image-to-text', 'describe-image'], | |
| 'Games': ['game', 'games', 'play', 'playground'], | |
| 'Finance': ['finance', 'stock', 'money', 'currency', 'bank', 'market'], | |
| 'SAM': ['sam', 'segmentation', 'mask'], | |
| 'Science': ['science', 'physics', 'chemistry', 'biology', 'math', 'astronomy', 'geology', 'meteorology', 'engineering', 'medicine', 'health', 'nutrition', 'environment', 'ecology', 'geography', 'geology', 'geophysics'], | |
| 'Education': ['education', 'school', 'university', 'college', 'teaching', 'learning', 'study', 'research'], | |
| 'Graph': ['graph', 'network', 'node', 'edge', 'path', 'tree', 'cycle', 'flow', 'matching', 'coloring', 'swarm'], | |
| 'Research': ['research', 'study', 'experiment', 'paper', 'discovery', 'innovation', 'exploration', 'analysis'], | |
| 'Document Analyis': ['pdf', 'RAG', 'idefecs'], | |
| 'WebGPU': ['localModel', 'webGPU'], | |
| 'Point Tracking': ['CoTracker', 'tapir', 'tapnet', 'point', 'track'], | |
| 'Games': ['game', 'Unity', 'UE5', 'Unreal'], | |
| 'Leaderboard': ['arena', 'leaderboard', 'timeline'], | |
| 'Other': [] # Default category | |
| } | |
| def categorize_space(title, tags): | |
| title_lower = title.lower() | |
| # Convert tags to lowercase if tags exist | |
| tags_lower = [t.lower() for t in tags] if tags else [] | |
| for category, keywords in categories.items(): | |
| # Check both title and tags for keywords | |
| if any(keyword in title_lower for keyword in keywords) or \ | |
| any(keyword in tag for keyword in keywords for tag in tags_lower): | |
| return category | |
| return 'Other' | |
| # Add category to DataFrame | |
| df['category'] = df.apply(lambda x: categorize_space(x['title'], x['tags']), axis=1) | |
| # Show category distribution | |
| category_counts = df['category'].value_counts() | |
| print("\nCategory Distribution:") | |
| print(category_counts) | |
| # Show sample spaces from each category | |
| print("\nSample spaces from each category:") | |
| for category in categories.keys(): | |
| print(f"\n{category}:") | |
| sample = df[df['category'] == category].head(3) | |
| print(sample[['title', 'likes']].to_string()) | |
| # ------------------------------------------------------ | |
| # Add total likes per category | |
| category_likes = df.groupby('category')['likes'].sum().sort_values(ascending=False) | |
| print("Total likes per category:") | |
| print(category_likes) | |
| print("\nTop 10 spaces in each category (sorted by likes):") | |
| for category in categories.keys(): | |
| print(f"\n=== {category} ===") | |
| top_10 = df[df['category'] == category].nlargest(10, 'likes')[['title', 'likes']] | |
| # Format output with padding for better readability | |
| print(top_10.to_string(index=False)) | |
| # ------------------------------------------------------ | |
| # Add space URLs | |
| df['url'] = 'https://huggingface.co/spaces/' + df['id'] | |
| # Show the top 10 spaces from each category with their links | |
| # print("Top 10 spaces in each category with links:") | |
| # for category in categories.keys(): | |
| # print(f"\n=== {category} ===") | |
| # top_10 = df[df['category'] == category].nlargest(10, 'likes')[['title', 'likes', 'url']] | |
| # Format output with padding for better readability | |
| # print(top_5.to_string(index=False)) | |
| # ------------------------------------------------------ | |
| def search_spaces(search_text="", category="All Categories", offset=0, limit=100): | |
| # Filter spaces | |
| if category == "All Categories": | |
| spaces_df = df | |
| else: | |
| spaces_df = df[df['category'] == category] | |
| if search_text: | |
| spaces_df = spaces_df[spaces_df['title'].str.lower().str.contains(search_text.lower())] | |
| # Sort by likes and get total count | |
| spaces_df = spaces_df.sort_values('likes', ascending=False) | |
| total_spaces = len(spaces_df) | |
| total_pages = (total_spaces + limit - 1) // limit | |
| current_page = (offset // limit) + 1 | |
| # Get the current page of spaces | |
| spaces = spaces_df.iloc[offset:offset + limit][['title', 'likes', 'url', 'category']] | |
| total_likes = spaces_df['likes'].sum() | |
| # Generate HTML content | |
| html_content = f""" | |
| <div style='margin-bottom: 20px; padding: 10px; background-color: var(--color-background-primary); | |
| border: 1px solid var(--color-border-primary); border-radius: 5px;'> | |
| <h3 style='color: var(--color-text-primary);'>Statistics:</h3> | |
| <p style='color: var(--color-text-primary);'>Page {current_page} of {total_pages}</p> | |
| <p style='color: var(--color-text-primary);'>Showing {offset + 1}-{min(offset + limit, total_spaces)} of {total_spaces} Spaces</p> | |
| <p style='color: var(--color-text-primary);'>Total Likes: {total_likes:,}</p> | |
| </div> | |
| <div style='max-height: 800px; overflow-y: auto;'> | |
| <div style='display: grid; grid-template-columns: repeat(3, minmax(300px, 1fr)); | |
| gap: 15px; padding: 10px; width: 100%; max-width: 1800px; margin: 0 auto;'> | |
| """ | |
| for _, row in spaces.iterrows(): | |
| html_content += f""" | |
| <div style='padding: 15px; | |
| border: 2px solid var(--color-border-primary); | |
| border-radius: 5px; | |
| background-color: var(--color-background-primary); | |
| box-shadow: 0 2px 4px rgba(0,0,0,0.1); | |
| display: flex; | |
| flex-direction: column; | |
| height: 100%; | |
| position: relative; | |
| min-width: 0; | |
| <h3 style='margin-top: 0; margin-bottom: 10px; | |
| overflow: hidden; text-overflow: ellipsis; | |
| word-wrap: break-word; hyphens: auto;'> | |
| <a href='{row['url']}' target='_blank' | |
| style='color: #2196F3; | |
| text-decoration: none; | |
| font-weight: bold; | |
| display: -webkit-box; | |
| -webkit-line-clamp: 2; | |
| -webkit-box-orient: vertical; | |
| overflow: hidden;'>{row['title']}</a> | |
| </h3> | |
| <div style='height: 2px; | |
| background: var(--color-border-primary); | |
| margin: 10px 0; | |
| width: 100%;'></div> | |
| <p style='color: var(--color-text-primary); margin: 8px 0;'> | |
| <span style='background-color: var(--color-accent-soft); | |
| padding: 2px 8px; | |
| border-radius: 12px; | |
| font-size: 0.9em; | |
| display: inline-block; | |
| max-width: 100%; | |
| overflow: hidden; | |
| text-overflow: ellipsis;'> | |
| {row['category']} | |
| </span> | |
| </p> | |
| <p style='color: var(--color-text-primary); | |
| margin-top: auto; | |
| padding-top: 10px; | |
| border-top: 1px solid var(--color-border-primary);'> | |
| ❤️ {row['likes']:,} likes | |
| </p> | |
| </div> | |
| """ | |
| html_content += "</div></div>" | |
| has_more = offset + limit < total_spaces | |
| remaining = total_spaces - (offset + limit) if has_more else 0 | |
| can_go_back = offset > 0 | |
| return html_content, has_more, remaining, can_go_back, current_page, total_pages | |
| def create_app(): | |
| with gr.Blocks(title="Hugging Face Spaces Explorer", theme=gr.themes.Soft()) as app: | |
| offset = gr.State(value=0) | |
| gr.Markdown(""" | |
| # 🤗 Hugging Face Spaces Explorer | |
| Explore and discover popular Hugging Face Spaces by category. | |
| Any currently uncategorized spaces will be listed under "Other" or "All Categories", | |
| if you would like to help make Spaces easier to search and filter through feel free | |
| to add on to my project or recommend additional filters! | |
| """) | |
| with gr.Row(): | |
| category_dropdown = gr.Dropdown( | |
| choices=["All Categories"] + sorted(df['category'].unique()), | |
| label="Select Category", | |
| value="All Categories" | |
| ) | |
| search_input = gr.Textbox( | |
| label="Search Spaces", | |
| placeholder="Enter search terms..." | |
| ) | |
| spaces_display = gr.HTML() | |
| with gr.Row(): | |
| prev_button = gr.Button("← Previous Page", visible=False) | |
| page_info = gr.Markdown("", visible=False) | |
| next_button = gr.Button("Next Page →", visible=False) | |
| def load_page(search_text, category, current_offset): | |
| content, has_more, remaining, can_go_back, current_page, total_pages = search_spaces( | |
| search_text, category, current_offset | |
| ) | |
| return { | |
| spaces_display: content, | |
| next_button: gr.update(visible=has_more), | |
| prev_button: gr.update(visible=can_go_back), | |
| page_info: gr.update( | |
| visible=True, | |
| value=f"*Page {current_page} of {total_pages} ({remaining} more spaces available)*" | |
| ), | |
| offset: current_offset | |
| } | |
| def next_page(search_text, category, current_offset): | |
| return load_page(search_text, category, current_offset + 100) | |
| def prev_page(search_text, category, current_offset): | |
| new_offset = max(0, current_offset - 100) | |
| return load_page(search_text, category, new_offset) | |
| def reset_and_search(search_text, category): | |
| return load_page(search_text, category, 0) | |
| # Initial load | |
| app.load( | |
| fn=lambda: reset_and_search("", "All Categories"), | |
| outputs=[spaces_display, next_button, prev_button, page_info, offset] | |
| ) | |
| # Event handlers | |
| category_dropdown.change( | |
| fn=reset_and_search, | |
| inputs=[search_input, category_dropdown], | |
| outputs=[spaces_display, next_button, prev_button, page_info, offset] | |
| ) | |
| search_input.change( | |
| fn=reset_and_search, | |
| inputs=[search_input, category_dropdown], | |
| outputs=[spaces_display, next_button, prev_button, page_info, offset] | |
| ) | |
| next_button.click( | |
| fn=next_page, | |
| inputs=[search_input, category_dropdown, offset], | |
| outputs=[spaces_display, next_button, prev_button, page_info, offset] | |
| ) | |
| prev_button.click( | |
| fn=prev_page, | |
| inputs=[search_input, category_dropdown, offset], | |
| outputs=[spaces_display, next_button, prev_button, page_info, offset] | |
| ) | |
| return app | |
| # Launch the app | |
| app = create_app() | |
| app.launch() |