Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import pandas as pd | |
| from huggingface_hub import HfApi | |
| from collections import defaultdict | |
| # ------------------------------------------------------ | |
| # Get spaces with more details | |
| api = HfApi() | |
| spaces = api.list_spaces(limit=40000) # Limiting to 40000 for now | |
| # Create a DataFrame | |
| data = [] | |
| for space in spaces: | |
| data.append({ | |
| 'id': space.id, | |
| 'title': space.id.split('/')[-1], | |
| 'author': space.author if space.author else space.id.split('/')[0], | |
| 'likes': space.likes, | |
| 'tags': space.tags if hasattr(space, 'tags') else [], | |
| }) | |
| df = pd.DataFrame(data) | |
| print("Total spaces collected:", len(df)) | |
| print("\nSample of the data:") | |
| print(df.head()) | |
| # ------------------------------------------------------ | |
| # Define categories and their keywords | |
| categories = { | |
| 'Text-to-Speech': ['tts', 'speech', 'voice', 'audio', 'kokoro'], | |
| 'Transcription': ['transcribe', 'transcription'], | |
| 'Agents': ['agent', 'agents', 'smol', 'multi-step', 'autobot', 'autoGPT' 'agentic'], | |
| 'Image Generation': ['stable-diffusion', 'diffusion', 'flux', 'dalle', 'gan', 'sdxl', 'midjourney', 'diffusion', 'image', 'img2img', 'style', 'art'], | |
| 'Video': ['video', 'animation', 'motion', 'sora'], | |
| 'Face/Portrait': ['face', 'portrait', 'gaze', 'facial'], | |
| 'Chat/LLM': ['chat', 'llm', 'gpt', 'llama', 'text', 'language'], | |
| '3D': ['3d', 'mesh', 'point-cloud', 'depth'], | |
| 'Audio': ['audio', 'tts', 'music', 'whisper', 'sound', 'voice'], | |
| 'Vision': ['vision', 'detection', 'recognition', 'classifier'], | |
| 'CLIP': ['image-to-text', 'describe-image'], | |
| 'Games': ['game', 'games', 'play', 'playground'], | |
| 'Finance': ['finance', 'stock', 'money', 'currency', 'bank', 'market'], | |
| 'SAM': ['sam', 'segmentation', 'mask'], | |
| 'Science': ['science', 'physics', 'chemistry', 'biology', 'math', 'astronomy', 'geology', 'meteorology', 'engineering', 'medicine', 'health', 'nutrition', 'environment', 'ecology', 'geography', 'geology', 'geophysics'], | |
| 'Education': ['education', 'school', 'university', 'college', 'teaching', 'learning', 'study', 'research'], | |
| 'Graph': ['graph', 'network', 'node', 'edge', 'path', 'tree', 'cycle', 'flow', 'matching', 'coloring', 'swarm'], | |
| 'Research': ['research', 'study', 'experiment', 'paper', 'discovery', 'innovation', 'exploration', 'analysis'], | |
| 'Document Analyis': ['pdf', 'RAG', 'idefecs'], | |
| 'WebGPU': ['localModel', 'webGPU'], | |
| 'Point Tracking': ['CoTracker', 'tapir', 'tapnet', 'point', 'track'], | |
| 'Games': ['game', 'Unity', 'UE5', 'Unreal'], | |
| 'Leaderboard': ['arena', 'leaderboard', 'timeline'], | |
| 'Other': [] # Default category | |
| } | |
| def categorize_space(title, tags): | |
| title_lower = title.lower() | |
| # Convert tags to lowercase if tags exist | |
| tags_lower = [t.lower() for t in tags] if tags else [] | |
| for category, keywords in categories.items(): | |
| # Check both title and tags for keywords | |
| if any(keyword in title_lower for keyword in keywords) or \ | |
| any(keyword in tag for keyword in keywords for tag in tags_lower): | |
| return category | |
| return 'Other' | |
| # Add category to DataFrame | |
| df['category'] = df.apply(lambda x: categorize_space(x['title'], x['tags']), axis=1) | |
| # Show category distribution | |
| category_counts = df['category'].value_counts() | |
| print("\nCategory Distribution:") | |
| print(category_counts) | |
| # Show sample spaces from each category | |
| print("\nSample spaces from each category:") | |
| for category in categories.keys(): | |
| print(f"\n{category}:") | |
| sample = df[df['category'] == category].head(3) | |
| print(sample[['title', 'likes']].to_string()) | |
| # ------------------------------------------------------ | |
| # Add total likes per category | |
| category_likes = df.groupby('category')['likes'].sum().sort_values(ascending=False) | |
| print("Total likes per category:") | |
| print(category_likes) | |
| print("\nTop 10 spaces in each category (sorted by likes):") | |
| for category in categories.keys(): | |
| print(f"\n=== {category} ===") | |
| top_10 = df[df['category'] == category].nlargest(10, 'likes')[['title', 'likes']] | |
| # Format output with padding for better readability | |
| print(top_10.to_string(index=False)) | |
| # ------------------------------------------------------ | |
| # Add space URLs | |
| df['url'] = 'https://huggingface.co/spaces/' + df['id'] | |
| # Show the top 10 spaces from each category with their links | |
| # print("Top 10 spaces in each category with links:") | |
| # for category in categories.keys(): | |
| # print(f"\n=== {category} ===") | |
| # top_10 = df[df['category'] == category].nlargest(10, 'likes')[['title', 'likes', 'url']] | |
| # Format output with padding for better readability | |
| # print(top_5.to_string(index=False)) | |
| # ------------------------------------------------------ | |
| def search_spaces(search_text, category): | |
| if category == "All Categories": | |
| spaces_df = df | |
| else: | |
| spaces_df = df[df['category'] == category] | |
| if search_text: | |
| spaces_df = spaces_df[spaces_df['title'].str.lower().str.contains(search_text.lower())] | |
| spaces = spaces_df.nlargest(30, 'likes')[['title', 'likes', 'url', 'category']] | |
| # Get category stats | |
| total_spaces = len(spaces_df) | |
| total_likes = spaces_df['likes'].sum() | |
| # Format the results as HTML with clickable links and stats | |
| html_content = f""" | |
| <div style='margin-bottom: 20px; padding: 10px; background-color: var(--color-background-primary); | |
| border: 1px solid var(--color-border-primary); border-radius: 5px;'> | |
| <h3 style='color: var(--color-text-primary);'>Statistics:</h3> | |
| <p style='color: var(--color-text-primary);'>Total Spaces: {total_spaces}</p> | |
| <p style='color: var(--color-text-primary);'>Total Likes: {total_likes:,}</p> | |
| </div> | |
| <div style='max-height: 800px; overflow-y: auto;'> | |
| <div style='display: grid; grid-template-columns: repeat(3, 1fr); gap: 15px; padding: 10px;'> | |
| """ | |
| for _, row in spaces.iterrows(): | |
| # In the search_spaces function, update the card HTML template: | |
| html_content += f""" | |
| <div style='padding: 15px; | |
| border: 2px solid var(--color-border-primary); | |
| border-radius: 5px; | |
| background-color: var(--color-background-primary); | |
| box-shadow: 0 2px 4px rgba(0,0,0,0.1); | |
| display: flex; | |
| flex-direction: column; | |
| height: 100%; | |
| position: relative;'> | |
| <h3 style='margin-top: 0; margin-bottom: 10px;'> | |
| <a href='{row['url']}' target='_blank' | |
| style='color: #2196F3; | |
| text-decoration: none; | |
| font-weight: bold;'>{row['title']}</a> | |
| </h3> | |
| <div style='height: 2px; | |
| background: var(--color-border-primary); | |
| margin: 10px 0; | |
| width: 100%;'></div> | |
| <p style='color: var(--color-text-primary); margin: 8px 0;'> | |
| <span style='background-color: var(--color-accent-soft); | |
| padding: 2px 8px; | |
| border-radius: 12px; | |
| font-size: 0.9em;'> | |
| {row['category']} | |
| </span> | |
| </p> | |
| <p style='color: var(--color-text-primary); | |
| margin-top: auto; | |
| padding-top: 10px; | |
| border-top: 1px solid var(--color-border-primary);'> | |
| ❤️ {row['likes']:,} likes | |
| </p> | |
| </div> | |
| """ | |
| html_content += "</div></div>" | |
| return html_content | |
| # Create the Gradio interface | |
| def create_app(): | |
| with gr.Blocks( | |
| title="Hugging Face Spaces Explorer", | |
| theme=gr.themes.Soft( | |
| primary_hue="blue", | |
| secondary_hue="blue", | |
| ) | |
| ) as app: | |
| gr.Markdown(""" | |
| # 🤗 Hugging Face Spaces Explorer | |
| Explore and discover popular Hugging Face Spaces by category | |
| """) | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| # Category selection | |
| category_dropdown = gr.Dropdown( | |
| choices=["All Categories"] + sorted(df['category'].unique()), | |
| label="Select Category", | |
| value="All Categories" | |
| ) | |
| # Search box | |
| search_input = gr.Textbox( | |
| label="Search Spaces", | |
| placeholder="Enter search terms..." | |
| ) | |
| # Display area for spaces | |
| spaces_display = gr.HTML(value=search_spaces("", "All Categories")) | |
| # Update display when category or search changes | |
| category_dropdown.change( | |
| fn=search_spaces, | |
| inputs=[search_input, category_dropdown], | |
| outputs=spaces_display | |
| ) | |
| search_input.change( | |
| fn=search_spaces, | |
| inputs=[search_input, category_dropdown], | |
| outputs=spaces_display | |
| ) | |
| return app | |
| # Launch the app | |
| app = create_app() | |
| app.launch(share=True) |