Spaces:
Sleeping
Sleeping
here goes nothing
Browse files- app.py +121 -4
- requirements.txt +3 -0
app.py
CHANGED
|
@@ -1,7 +1,124 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
|
| 4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from fish_speech import LM
|
| 3 |
+
import re
|
| 4 |
+
from rustymimi import Tokenizer
|
| 5 |
+
from huggingface_hub import snapshot_download, hf_hub_download
|
| 6 |
+
import numpy as np
|
| 7 |
+
import spaces
|
| 8 |
|
| 9 |
+
# Voice mapping dictionary:
|
| 10 |
+
# US voices
|
| 11 |
+
# heart (default) -> <|speaker:0|>
|
| 12 |
+
# bella -> <|speaker:1|>
|
| 13 |
+
# nova -> <|speaker:2|>
|
| 14 |
+
# sky -> <|speaker:3|>
|
| 15 |
+
# sarah -> <|speaker:4|>
|
| 16 |
+
# michael -> <|speaker:5|>
|
| 17 |
+
# fenrir -> <|speaker:6|>
|
| 18 |
+
# liam -> <|speaker:7|>
|
| 19 |
+
# British voices
|
| 20 |
+
# emma -> <|speaker:8|>
|
| 21 |
+
# isabella -> <|speaker:9|>
|
| 22 |
+
# fable -> <|speaker:10|>
|
| 23 |
+
voice_mapping = {
|
| 24 |
+
"Heart (US)": "<|speaker:0|>",
|
| 25 |
+
"Bella (US)": "<|speaker:1|>",
|
| 26 |
+
"Nova (US)": "<|speaker:2|>",
|
| 27 |
+
"Sky (US)": "<|speaker:3|>",
|
| 28 |
+
"Sarah (US)": "<|speaker:4|>",
|
| 29 |
+
"Michael (US)": "<|speaker:5|>",
|
| 30 |
+
"Fenrir (US)": "<|speaker:6|>",
|
| 31 |
+
"Liam (US)": "<|speaker:7|>",
|
| 32 |
+
"Emma (UK)": "<|speaker:8|>",
|
| 33 |
+
"Isabella (UK)": "<|speaker:9|>",
|
| 34 |
+
"Fable (UK)": "<|speaker:10|>",
|
| 35 |
+
}
|
| 36 |
|
| 37 |
+
# Initialize models
|
| 38 |
+
print("Downloading and initializing models...")
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def get_mimi_path():
|
| 42 |
+
"""Get Mimi tokenizer weights from Hugging Face."""
|
| 43 |
+
repo_id = "kyutai/moshiko-mlx-bf16"
|
| 44 |
+
filename = "tokenizer-e351c8d8-checkpoint125.safetensors"
|
| 45 |
+
return hf_hub_download(repo_id, filename)
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
dir = snapshot_download("jkeisling/smoltts_v0")
|
| 49 |
+
mimi_path = get_mimi_path()
|
| 50 |
+
# lm = LM(dir, dtype="bf16", device="cuda", version="dual_ar")
|
| 51 |
+
codec = Tokenizer(mimi_path)
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
# Naively split text into sentences
|
| 55 |
+
def split_sentences(text):
|
| 56 |
+
sentences = re.split(r"(?<=[?.!])\s+", text)
|
| 57 |
+
return [s.strip() for s in sentences if s.strip()]
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
@spaces.GPU
|
| 61 |
+
def synthesize_speech(text, temperature, top_p, voice):
|
| 62 |
+
"""Generate speech from text using Fish Speech, processing each sentence separately."""
|
| 63 |
+
lm = LM(dir, dtype="bf16", device="cuda", version="dual_ar")
|
| 64 |
+
sysprompt = voice_mapping.get(voice, "<|speaker:0|>")
|
| 65 |
+
sentences = split_sentences(text)
|
| 66 |
+
pcm_list = []
|
| 67 |
+
|
| 68 |
+
for sentence in sentences:
|
| 69 |
+
# Generate audio for each sentence individually
|
| 70 |
+
generated = lm([sentence], temp=temperature, top_p=top_p, sysprompt=sysprompt)
|
| 71 |
+
pcm = codec.decode(generated)
|
| 72 |
+
pcm_list.append(pcm.flatten())
|
| 73 |
+
|
| 74 |
+
# Concatenate all PCM arrays into one
|
| 75 |
+
final_pcm = np.concatenate(pcm_list)
|
| 76 |
+
return (24_000, final_pcm)
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
# Create the Gradio interface
|
| 80 |
+
with gr.Blocks(
|
| 81 |
+
theme=gr.themes.Default(
|
| 82 |
+
font=[gr.themes.GoogleFont("IBM Plex Sans"), "Arial", "sans-serif"],
|
| 83 |
+
font_mono=gr.themes.GoogleFont("IBM Plex Mono"),
|
| 84 |
+
primary_hue=gr.themes.colors.blue,
|
| 85 |
+
secondary_hue=gr.themes.colors.slate,
|
| 86 |
+
)
|
| 87 |
+
) as demo:
|
| 88 |
+
with gr.Row():
|
| 89 |
+
gr.Markdown("""
|
| 90 |
+
# SmolTTS v0
|
| 91 |
+
|
| 92 |
+
SmolTTS v0 is an autoregressive 150M parameter character-level text-to-speech model pretrained with an [RQTransformer backbone](https://arxiv.org/abs/2203.01941) and paired with a pretrained [Mimi codec](https://arxiv.org/abs/2410.00037) vocoder. Designed for US and UK English, it was trained entirely on synthetic speech data generated using [Kokoro TTS](https://huggingface.co/hexgrad/Kokoro-82M). SmolTTS is Apache 2.0 licensed - enjoy!
|
| 93 |
+
""")
|
| 94 |
+
|
| 95 |
+
with gr.Row():
|
| 96 |
+
with gr.Column():
|
| 97 |
+
input_text = gr.Textbox(
|
| 98 |
+
label="Input Text", placeholder="Enter text to synthesize...", lines=3
|
| 99 |
+
)
|
| 100 |
+
voice_dropdown = gr.Dropdown(
|
| 101 |
+
label="Voice",
|
| 102 |
+
choices=list(voice_mapping.keys()),
|
| 103 |
+
value="heart (US)",
|
| 104 |
+
info="Select a voice (sysprompt mapping)",
|
| 105 |
+
)
|
| 106 |
+
with gr.Row():
|
| 107 |
+
temperature = gr.Slider(
|
| 108 |
+
minimum=0.0, maximum=1.0, value=0.1, step=0.1, label="Temperature"
|
| 109 |
+
)
|
| 110 |
+
top_p = gr.Slider(
|
| 111 |
+
minimum=0.0, maximum=1.0, value=0.85, step=0.01, label="Top P"
|
| 112 |
+
)
|
| 113 |
+
with gr.Column():
|
| 114 |
+
audio_output = gr.Audio(label="Generated Speech", type="numpy")
|
| 115 |
+
|
| 116 |
+
generate_btn = gr.Button("Generate Speech", variant="primary")
|
| 117 |
+
generate_btn.click(
|
| 118 |
+
fn=synthesize_speech,
|
| 119 |
+
inputs=[input_text, temperature, top_p, voice_dropdown],
|
| 120 |
+
outputs=[audio_output],
|
| 121 |
+
)
|
| 122 |
+
|
| 123 |
+
if __name__ == "__main__":
|
| 124 |
+
demo.launch(server_name="0.0.0.0", share=False)
|
requirements.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
fish_speech_rs>=0.3.0
|
| 2 |
+
rustymimi
|
| 3 |
+
numpy
|