Spaces:
Runtime error
Runtime error
| '''Image Completion Demo (ImageGPT) | |
| - Paper: https://arxiv.org/abs/2109.10282 | |
| - Code: https://huggingface.co/spaces/nielsr/imagegpt-completion | |
| --- | |
| - 2021-12-10 first created | |
| - examples changed | |
| ''' | |
| from PIL import Image | |
| import matplotlib.pyplot as plt | |
| import os | |
| import numpy as np | |
| from glob import glob | |
| import gradio as gr | |
| from loguru import logger | |
| import torch | |
| from transformers import ImageGPTFeatureExtractor, ImageGPTForCausalImageModeling | |
| # ========== Settings ========== | |
| EXAMPLE_DIR = 'examples' | |
| examples = sorted(glob(os.path.join(EXAMPLE_DIR, '*.jpg'))) | |
| # ========== Logger ========== | |
| logger.add('app.log', mode='a') | |
| logger.info('===== APP RESTARTED =====') | |
| # ========== Models ========== | |
| # MODEL_DIR = 'models' | |
| # os.environ['TORCH_HOME'] = MODEL_DIR | |
| # os.environ['TF_HOME'] = MODEL_DIR | |
| feature_extractor = ImageGPTFeatureExtractor.from_pretrained( | |
| "openai/imagegpt-medium", | |
| # cache_dir=MODEL_DIR | |
| ) | |
| model = ImageGPTForCausalImageModeling.from_pretrained( | |
| "openai/imagegpt-medium", | |
| # cache_dir=MODEL_DIR | |
| ) | |
| DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| model.to(DEVICE) | |
| logger.info(f'model loaded (DEVICE:{DEVICE})') | |
| def process_image(image): | |
| logger.info('--- image file received') | |
| # prepare 7 images, shape (7, 1024) | |
| batch_size = 7 | |
| encoding = feature_extractor([image for _ in range(batch_size)], return_tensors="pt") | |
| # create primers | |
| samples = encoding.pixel_values.numpy() | |
| n_px = feature_extractor.size | |
| clusters = feature_extractor.clusters | |
| n_px_crop = 16 | |
| primers = samples.reshape(-1,n_px*n_px)[:,:n_px_crop*n_px] # crop top n_px_crop rows. These will be the conditioning tokens | |
| # get conditioned image (from first primer tensor), padded with black pixels to be 32x32 | |
| primers_img = np.reshape(np.rint(127.5 * (clusters[primers[0]] + 1.0)), [n_px_crop,n_px, 3]).astype(np.uint8) | |
| primers_img = np.pad(primers_img, pad_width=((0,16), (0,0), (0,0)), mode="constant") | |
| # generate (no beam search) | |
| context = np.concatenate((np.full((batch_size, 1), model.config.vocab_size - 1), primers), axis=1) | |
| context = torch.tensor(context).to(DEVICE) | |
| output = model.generate(input_ids=context, max_length=n_px*n_px + 1, temperature=1.0, do_sample=True, top_k=40) | |
| # decode back to images (convert color cluster tokens back to pixels) | |
| samples = output[:,1:].cpu().detach().numpy() | |
| samples_img = [np.reshape(np.rint(127.5 * (clusters[s] + 1.0)), [n_px, n_px, 3]).astype(np.uint8) for s in samples] | |
| samples_img = [primers_img] + samples_img | |
| # stack images horizontally | |
| row1 = np.hstack(samples_img[:4]) | |
| row2 = np.hstack(samples_img[4:]) | |
| result = np.vstack([row1, row2]) | |
| # return as PIL Image | |
| completion = Image.fromarray(result) | |
| logger.info('--- image generated') | |
| return completion | |
| iface = gr.Interface( | |
| process_image, | |
| title="์ด๋ฏธ์ง์ ์ ๋ฐ์ ์ง์ฐ๊ณ ์ ๋ฐ์ ์ฑ์ ๋ฃ์ด์ฃผ๋ Image Completion ๋ฐ๋ชจ์ ๋๋ค (ImageGPT)", | |
| description='์ฃผ์ด์ง ์ด๋ฏธ์ง์ ์ ๋ฐ ์๋๋ฅผ AI๊ฐ ์ฑ์ ๋ฃ์ด์ค๋๋ค (CPU๋ก ์ฝ 100์ด ์ ๋ ์์๋ฉ๋๋ค)', | |
| inputs=gr.inputs.Image(type="pil", label='์ธํ ์ด๋ฏธ์ง'), | |
| outputs=gr.outputs.Image(type="pil", label='AI๊ฐ ๊ทธ๋ฆฐ ๊ฒฐ๊ณผ'), | |
| examples=examples, | |
| enable_queue=True, | |
| article='<p style="text-align:center">Based on <a href="https://huggingface.co/spaces/nielsr/imagegpt-completion">๐ค Link</a></p>', | |
| ) | |
| if __name__ == '__main__': | |
| iface.launch(debug=True) | |