Update app.py
Browse files
app.py
CHANGED
|
@@ -22,19 +22,44 @@ tokenizer = AutoTokenizer.from_pretrained(peft_model_id)
|
|
| 22 |
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
| 23 |
|
| 24 |
|
| 25 |
-
|
| 26 |
-
def
|
| 27 |
-
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
prompt = pipe.tokenizer.apply_chat_template(combined_json_data, tokenize=False, add_generation_prompt=True)
|
| 30 |
outputs = pipe(prompt, max_new_tokens=256, do_sample=False, temperature=0.1, top_k=50, top_p=0.1, eos_token_id=pipe.tokenizer.eos_token_id, pad_token_id=pipe.tokenizer.pad_token_id)
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
question_input = gr.inputs.Textbox(lines=7, label="Enter your question")
|
| 34 |
-
output_text = gr.outputs.Textbox(label="Generated SQL Query")
|
| 35 |
|
| 36 |
-
|
| 37 |
-
gr.Interface(fn=translate_to_sql, inputs=question_input, outputs=output_text, title="Text to SQL Translator", description="Translate English questions to SQL queries.").launch()
|
| 38 |
|
| 39 |
-
# Create
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
| 23 |
|
| 24 |
|
| 25 |
+
|
| 26 |
+
def text_to_sql(text):
|
| 27 |
+
# Load Model with PEFT adapter
|
| 28 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 29 |
+
"jinhybr/code-llama-7b-text-to-sql",
|
| 30 |
+
device="cuda" if torch.cuda.is_available() else "cpu",
|
| 31 |
+
torch_dtype=torch.float16
|
| 32 |
+
)
|
| 33 |
+
tokenizer = AutoTokenizer.from_pretrained("jinhybr/code-llama-7b-text-to-sql")
|
| 34 |
+
|
| 35 |
+
# load into pipeline
|
| 36 |
+
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
| 37 |
+
|
| 38 |
+
# Define schema and user question
|
| 39 |
+
#schema = "CREATE TABLE table_17429402_7 (school VARCHAR, last_occ_championship VARCHAR)"
|
| 40 |
+
schema = 'You are an text to SQL query translator. Users will ask you questions in English and you will generate a SQL query based on the provided SCHEMA.\nSCHEMA:\nCREATE TABLE table_17429402_7 (school VARCHAR, last_occ_championship VARCHAR)'
|
| 41 |
+
user_question = text
|
| 42 |
+
#user_question = 'How many schools won their last occ championship in 2006?'
|
| 43 |
+
|
| 44 |
+
# Combine schema and user question
|
| 45 |
+
combined_json_data = [
|
| 46 |
+
{'content': schema, 'role': 'system'},
|
| 47 |
+
{'content': user_question, 'role': 'user'}
|
| 48 |
+
]
|
| 49 |
+
|
| 50 |
+
# Generate SQL query
|
| 51 |
prompt = pipe.tokenizer.apply_chat_template(combined_json_data, tokenize=False, add_generation_prompt=True)
|
| 52 |
outputs = pipe(prompt, max_new_tokens=256, do_sample=False, temperature=0.1, top_k=50, top_p=0.1, eos_token_id=pipe.tokenizer.eos_token_id, pad_token_id=pipe.tokenizer.pad_token_id)
|
| 53 |
+
sql_query = outputs[0]['generated_text'][len(prompt):].strip()
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
+
return sql_query
|
|
|
|
| 56 |
|
| 57 |
+
# Create Gradio Interface
|
| 58 |
+
iface = gr.Interface(
|
| 59 |
+
fn=text_to_sql,
|
| 60 |
+
inputs=gr.inputs.Textbox(lines=7, label="User Question"),
|
| 61 |
+
outputs=gr.outputs.Textbox(label="SQL Query"),
|
| 62 |
+
title="Text to SQL Translator",
|
| 63 |
+
description="Translate text to SQL query based on the provided schema."
|
| 64 |
+
)
|
| 65 |
+
iface.launch()
|