Spaces:
Configuration error
Configuration error
| # Copyright 2023 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import inspect | |
| import math | |
| import warnings | |
| from typing import Any, Callable, Dict, List, Optional, Union | |
| import PIL | |
| import torch | |
| import torchvision.transforms.functional as TF | |
| from diffusers.configuration_utils import ConfigMixin, FrozenDict, register_to_config | |
| from diffusers.image_processor import VaeImageProcessor | |
| from diffusers.models import AutoencoderKL, UNet2DConditionModel | |
| from diffusers.models.modeling_utils import ModelMixin | |
| from diffusers.pipelines.pipeline_utils import DiffusionPipeline | |
| from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput | |
| from diffusers.pipelines.stable_diffusion.safety_checker import ( | |
| StableDiffusionSafetyChecker, | |
| ) | |
| from diffusers.schedulers import KarrasDiffusionSchedulers | |
| from diffusers.utils import deprecate, is_accelerate_available, logging | |
| from diffusers.utils.torch_utils import randn_tensor | |
| from packaging import version | |
| from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| class CLIPCameraProjection(ModelMixin, ConfigMixin): | |
| """ | |
| A Projection layer for CLIP embedding and camera embedding. | |
| Parameters: | |
| embedding_dim (`int`, *optional*, defaults to 768): The dimension of the model input `clip_embed` | |
| additional_embeddings (`int`, *optional*, defaults to 4): The number of additional tokens appended to the | |
| projected `hidden_states`. The actual length of the used `hidden_states` is `num_embeddings + | |
| additional_embeddings`. | |
| """ | |
| def __init__(self, embedding_dim: int = 768, additional_embeddings: int = 4): | |
| super().__init__() | |
| self.embedding_dim = embedding_dim | |
| self.additional_embeddings = additional_embeddings | |
| self.input_dim = self.embedding_dim + self.additional_embeddings | |
| self.output_dim = self.embedding_dim | |
| self.proj = torch.nn.Linear(self.input_dim, self.output_dim) | |
| def forward( | |
| self, | |
| embedding: torch.FloatTensor, | |
| ): | |
| """ | |
| The [`PriorTransformer`] forward method. | |
| Args: | |
| hidden_states (`torch.FloatTensor` of shape `(batch_size, input_dim)`): | |
| The currently input embeddings. | |
| Returns: | |
| The output embedding projection (`torch.FloatTensor` of shape `(batch_size, output_dim)`). | |
| """ | |
| proj_embedding = self.proj(embedding) | |
| return proj_embedding | |
| class Zero123Pipeline(DiffusionPipeline): | |
| r""" | |
| Pipeline to generate variations from an input image using Stable Diffusion. | |
| This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
| library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
| Args: | |
| vae ([`AutoencoderKL`]): | |
| Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | |
| image_encoder ([`CLIPVisionModelWithProjection`]): | |
| Frozen CLIP image-encoder. Stable Diffusion Image Variation uses the vision portion of | |
| [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPVisionModelWithProjection), | |
| specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. | |
| unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. | |
| scheduler ([`SchedulerMixin`]): | |
| A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of | |
| [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. | |
| safety_checker ([`StableDiffusionSafetyChecker`]): | |
| Classification module that estimates whether generated images could be considered offensive or harmful. | |
| Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details. | |
| feature_extractor ([`CLIPImageProcessor`]): | |
| Model that extracts features from generated images to be used as inputs for the `safety_checker`. | |
| """ | |
| # TODO: feature_extractor is required to encode images (if they are in PIL format), | |
| # we should give a descriptive message if the pipeline doesn't have one. | |
| _optional_components = ["safety_checker"] | |
| def __init__( | |
| self, | |
| vae: AutoencoderKL, | |
| image_encoder: CLIPVisionModelWithProjection, | |
| unet: UNet2DConditionModel, | |
| scheduler: KarrasDiffusionSchedulers, | |
| safety_checker: StableDiffusionSafetyChecker, | |
| feature_extractor: CLIPImageProcessor, | |
| clip_camera_projection: CLIPCameraProjection, | |
| requires_safety_checker: bool = True, | |
| ): | |
| super().__init__() | |
| if safety_checker is None and requires_safety_checker: | |
| logger.warn( | |
| f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" | |
| " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" | |
| " results in services or applications open to the public. Both the diffusers team and Hugging Face" | |
| " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" | |
| " it only for use-cases that involve analyzing network behavior or auditing its results. For more" | |
| " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." | |
| ) | |
| if safety_checker is not None and feature_extractor is None: | |
| raise ValueError( | |
| "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" | |
| " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." | |
| ) | |
| is_unet_version_less_0_9_0 = hasattr( | |
| unet.config, "_diffusers_version" | |
| ) and version.parse( | |
| version.parse(unet.config._diffusers_version).base_version | |
| ) < version.parse( | |
| "0.9.0.dev0" | |
| ) | |
| is_unet_sample_size_less_64 = ( | |
| hasattr(unet.config, "sample_size") and unet.config.sample_size < 64 | |
| ) | |
| if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64: | |
| deprecation_message = ( | |
| "The configuration file of the unet has set the default `sample_size` to smaller than" | |
| " 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the" | |
| " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-" | |
| " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5" | |
| " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the" | |
| " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`" | |
| " in the config might lead to incorrect results in future versions. If you have downloaded this" | |
| " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for" | |
| " the `unet/config.json` file" | |
| ) | |
| deprecate( | |
| "sample_size<64", "1.0.0", deprecation_message, standard_warn=False | |
| ) | |
| new_config = dict(unet.config) | |
| new_config["sample_size"] = 64 | |
| unet._internal_dict = FrozenDict(new_config) | |
| self.register_modules( | |
| vae=vae, | |
| image_encoder=image_encoder, | |
| unet=unet, | |
| scheduler=scheduler, | |
| safety_checker=safety_checker, | |
| feature_extractor=feature_extractor, | |
| clip_camera_projection=clip_camera_projection, | |
| ) | |
| self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
| self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) | |
| self.register_to_config(requires_safety_checker=requires_safety_checker) | |
| def enable_sequential_cpu_offload(self, gpu_id=0): | |
| r""" | |
| Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet, | |
| text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a | |
| `torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called. | |
| """ | |
| if is_accelerate_available(): | |
| from accelerate import cpu_offload | |
| else: | |
| raise ImportError("Please install accelerate via `pip install accelerate`") | |
| device = torch.device(f"cuda:{gpu_id}") | |
| for cpu_offloaded_model in [ | |
| self.unet, | |
| self.image_encoder, | |
| self.vae, | |
| self.safety_checker, | |
| ]: | |
| if cpu_offloaded_model is not None: | |
| cpu_offload(cpu_offloaded_model, device) | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device | |
| def _execution_device(self): | |
| r""" | |
| Returns the device on which the pipeline's models will be executed. After calling | |
| `pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module | |
| hooks. | |
| """ | |
| if not hasattr(self.unet, "_hf_hook"): | |
| return self.device | |
| for module in self.unet.modules(): | |
| if ( | |
| hasattr(module, "_hf_hook") | |
| and hasattr(module._hf_hook, "execution_device") | |
| and module._hf_hook.execution_device is not None | |
| ): | |
| return torch.device(module._hf_hook.execution_device) | |
| return self.device | |
| def _encode_image( | |
| self, | |
| image, | |
| elevation, | |
| azimuth, | |
| distance, | |
| device, | |
| num_images_per_prompt, | |
| do_classifier_free_guidance, | |
| clip_image_embeddings=None, | |
| image_camera_embeddings=None, | |
| ): | |
| dtype = next(self.image_encoder.parameters()).dtype | |
| if image_camera_embeddings is None: | |
| if image is None: | |
| assert clip_image_embeddings is not None | |
| image_embeddings = clip_image_embeddings.to(device=device, dtype=dtype) | |
| else: | |
| if not isinstance(image, torch.Tensor): | |
| image = self.feature_extractor( | |
| images=image, return_tensors="pt" | |
| ).pixel_values | |
| image = image.to(device=device, dtype=dtype) | |
| image_embeddings = self.image_encoder(image).image_embeds | |
| image_embeddings = image_embeddings.unsqueeze(1) | |
| bs_embed, seq_len, _ = image_embeddings.shape | |
| if isinstance(elevation, float): | |
| elevation = torch.as_tensor( | |
| [elevation] * bs_embed, dtype=dtype, device=device | |
| ) | |
| if isinstance(azimuth, float): | |
| azimuth = torch.as_tensor( | |
| [azimuth] * bs_embed, dtype=dtype, device=device | |
| ) | |
| if isinstance(distance, float): | |
| distance = torch.as_tensor( | |
| [distance] * bs_embed, dtype=dtype, device=device | |
| ) | |
| camera_embeddings = torch.stack( | |
| [ | |
| torch.deg2rad(elevation), | |
| torch.sin(torch.deg2rad(azimuth)), | |
| torch.cos(torch.deg2rad(azimuth)), | |
| distance, | |
| ], | |
| dim=-1, | |
| )[:, None, :] | |
| image_embeddings = torch.cat([image_embeddings, camera_embeddings], dim=-1) | |
| # project (image, camera) embeddings to the same dimension as clip embeddings | |
| image_embeddings = self.clip_camera_projection(image_embeddings) | |
| else: | |
| image_embeddings = image_camera_embeddings.to(device=device, dtype=dtype) | |
| bs_embed, seq_len, _ = image_embeddings.shape | |
| # duplicate image embeddings for each generation per prompt, using mps friendly method | |
| image_embeddings = image_embeddings.repeat(1, num_images_per_prompt, 1) | |
| image_embeddings = image_embeddings.view( | |
| bs_embed * num_images_per_prompt, seq_len, -1 | |
| ) | |
| if do_classifier_free_guidance: | |
| negative_prompt_embeds = torch.zeros_like(image_embeddings) | |
| # For classifier free guidance, we need to do two forward passes. | |
| # Here we concatenate the unconditional and text embeddings into a single batch | |
| # to avoid doing two forward passes | |
| image_embeddings = torch.cat([negative_prompt_embeds, image_embeddings]) | |
| return image_embeddings | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker | |
| def run_safety_checker(self, image, device, dtype): | |
| if self.safety_checker is None: | |
| has_nsfw_concept = None | |
| else: | |
| if torch.is_tensor(image): | |
| feature_extractor_input = self.image_processor.postprocess( | |
| image, output_type="pil" | |
| ) | |
| else: | |
| feature_extractor_input = self.image_processor.numpy_to_pil(image) | |
| safety_checker_input = self.feature_extractor( | |
| feature_extractor_input, return_tensors="pt" | |
| ).to(device) | |
| image, has_nsfw_concept = self.safety_checker( | |
| images=image, clip_input=safety_checker_input.pixel_values.to(dtype) | |
| ) | |
| return image, has_nsfw_concept | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents | |
| def decode_latents(self, latents): | |
| warnings.warn( | |
| "The decode_latents method is deprecated and will be removed in a future version. Please" | |
| " use VaeImageProcessor instead", | |
| FutureWarning, | |
| ) | |
| latents = 1 / self.vae.config.scaling_factor * latents | |
| image = self.vae.decode(latents, return_dict=False)[0] | |
| image = (image / 2 + 0.5).clamp(0, 1) | |
| # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 | |
| image = image.cpu().permute(0, 2, 3, 1).float().numpy() | |
| return image | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs | |
| def prepare_extra_step_kwargs(self, generator, eta): | |
| # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
| # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
| # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
| # and should be between [0, 1] | |
| accepts_eta = "eta" in set( | |
| inspect.signature(self.scheduler.step).parameters.keys() | |
| ) | |
| extra_step_kwargs = {} | |
| if accepts_eta: | |
| extra_step_kwargs["eta"] = eta | |
| # check if the scheduler accepts generator | |
| accepts_generator = "generator" in set( | |
| inspect.signature(self.scheduler.step).parameters.keys() | |
| ) | |
| if accepts_generator: | |
| extra_step_kwargs["generator"] = generator | |
| return extra_step_kwargs | |
| def check_inputs(self, image, height, width, callback_steps): | |
| # TODO: check image size or adjust image size to (height, width) | |
| if height % 8 != 0 or width % 8 != 0: | |
| raise ValueError( | |
| f"`height` and `width` have to be divisible by 8 but are {height} and {width}." | |
| ) | |
| if (callback_steps is None) or ( | |
| callback_steps is not None | |
| and (not isinstance(callback_steps, int) or callback_steps <= 0) | |
| ): | |
| raise ValueError( | |
| f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
| f" {type(callback_steps)}." | |
| ) | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents | |
| def prepare_latents( | |
| self, | |
| batch_size, | |
| num_channels_latents, | |
| height, | |
| width, | |
| dtype, | |
| device, | |
| generator, | |
| latents=None, | |
| ): | |
| shape = ( | |
| batch_size, | |
| num_channels_latents, | |
| height // self.vae_scale_factor, | |
| width // self.vae_scale_factor, | |
| ) | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| if latents is None: | |
| latents = randn_tensor( | |
| shape, generator=generator, device=device, dtype=dtype | |
| ) | |
| else: | |
| latents = latents.to(device) | |
| # scale the initial noise by the standard deviation required by the scheduler | |
| latents = latents * self.scheduler.init_noise_sigma | |
| return latents | |
| def _get_latent_model_input( | |
| self, | |
| latents: torch.FloatTensor, | |
| image: Optional[ | |
| Union[PIL.Image.Image, List[PIL.Image.Image], torch.FloatTensor] | |
| ], | |
| num_images_per_prompt: int, | |
| do_classifier_free_guidance: bool, | |
| image_latents: Optional[torch.FloatTensor] = None, | |
| ): | |
| if isinstance(image, PIL.Image.Image): | |
| image_pt = TF.to_tensor(image).unsqueeze(0).to(latents) | |
| elif isinstance(image, list): | |
| image_pt = torch.stack([TF.to_tensor(img) for img in image], dim=0).to( | |
| latents | |
| ) | |
| elif isinstance(image, torch.Tensor): | |
| image_pt = image | |
| else: | |
| image_pt = None | |
| if image_pt is None: | |
| assert image_latents is not None | |
| image_pt = image_latents.repeat_interleave(num_images_per_prompt, dim=0) | |
| else: | |
| image_pt = image_pt * 2.0 - 1.0 # scale to [-1, 1] | |
| # FIXME: encoded latents should be multiplied with self.vae.config.scaling_factor | |
| # but zero123 was not trained this way | |
| image_pt = self.vae.encode(image_pt).latent_dist.mode() | |
| image_pt = image_pt.repeat_interleave(num_images_per_prompt, dim=0) | |
| if do_classifier_free_guidance: | |
| latent_model_input = torch.cat( | |
| [ | |
| torch.cat([latents, latents], dim=0), | |
| torch.cat([torch.zeros_like(image_pt), image_pt], dim=0), | |
| ], | |
| dim=1, | |
| ) | |
| else: | |
| latent_model_input = torch.cat([latents, image_pt], dim=1) | |
| return latent_model_input | |
| def __call__( | |
| self, | |
| image: Optional[ | |
| Union[PIL.Image.Image, List[PIL.Image.Image], torch.FloatTensor] | |
| ] = None, | |
| elevation: Optional[Union[float, torch.FloatTensor]] = None, | |
| azimuth: Optional[Union[float, torch.FloatTensor]] = None, | |
| distance: Optional[Union[float, torch.FloatTensor]] = None, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| num_inference_steps: int = 50, | |
| guidance_scale: float = 3.0, | |
| num_images_per_prompt: int = 1, | |
| eta: float = 0.0, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| clip_image_embeddings: Optional[torch.FloatTensor] = None, | |
| image_camera_embeddings: Optional[torch.FloatTensor] = None, | |
| image_latents: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
| callback_steps: int = 1, | |
| cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| ): | |
| r""" | |
| Function invoked when calling the pipeline for generation. | |
| Args: | |
| image (`PIL.Image.Image` or `List[PIL.Image.Image]` or `torch.FloatTensor`): | |
| The image or images to guide the image generation. If you provide a tensor, it needs to comply with the | |
| configuration of | |
| [this](https://huggingface.co/lambdalabs/sd-image-variations-diffusers/blob/main/feature_extractor/preprocessor_config.json) | |
| `CLIPImageProcessor` | |
| height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
| The height in pixels of the generated image. | |
| width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
| The width in pixels of the generated image. | |
| num_inference_steps (`int`, *optional*, defaults to 50): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
| expense of slower inference. | |
| guidance_scale (`float`, *optional*, defaults to 7.5): | |
| Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
| `guidance_scale` is defined as `w` of equation 2. of [Imagen | |
| Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
| 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
| usually at the expense of lower image quality. | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| The number of images to generate per prompt. | |
| eta (`float`, *optional*, defaults to 0.0): | |
| Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to | |
| [`schedulers.DDIMScheduler`], will be ignored for others. | |
| generator (`torch.Generator`, *optional*): | |
| One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
| to make generation deterministic. | |
| latents (`torch.FloatTensor`, *optional*): | |
| Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
| generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
| tensor will ge generated by sampling using the supplied random `generator`. | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generate image. Choose between | |
| [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
| plain tuple. | |
| callback (`Callable`, *optional*): | |
| A function that will be called every `callback_steps` steps during inference. The function will be | |
| called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | |
| callback_steps (`int`, *optional*, defaults to 1): | |
| The frequency at which the `callback` function will be called. If not specified, the callback will be | |
| called at every step. | |
| Returns: | |
| [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | |
| [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. | |
| When returning a tuple, the first element is a list with the generated images, and the second element is a | |
| list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" | |
| (nsfw) content, according to the `safety_checker`. | |
| """ | |
| # 0. Default height and width to unet | |
| height = height or self.unet.config.sample_size * self.vae_scale_factor | |
| width = width or self.unet.config.sample_size * self.vae_scale_factor | |
| # 1. Check inputs. Raise error if not correct | |
| # TODO: check input elevation, azimuth, and distance | |
| # TODO: check image, clip_image_embeddings, image_latents | |
| self.check_inputs(image, height, width, callback_steps) | |
| # 2. Define call parameters | |
| if isinstance(image, PIL.Image.Image): | |
| batch_size = 1 | |
| elif isinstance(image, list): | |
| batch_size = len(image) | |
| elif isinstance(image, torch.Tensor): | |
| batch_size = image.shape[0] | |
| else: | |
| assert image_latents is not None | |
| assert ( | |
| clip_image_embeddings is not None or image_camera_embeddings is not None | |
| ) | |
| batch_size = image_latents.shape[0] | |
| device = self._execution_device | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| do_classifier_free_guidance = guidance_scale > 1.0 | |
| # 3. Encode input image | |
| if isinstance(image, PIL.Image.Image) or isinstance(image, list): | |
| pil_image = image | |
| elif isinstance(image, torch.Tensor): | |
| pil_image = [TF.to_pil_image(image[i]) for i in range(image.shape[0])] | |
| else: | |
| pil_image = None | |
| image_embeddings = self._encode_image( | |
| pil_image, | |
| elevation, | |
| azimuth, | |
| distance, | |
| device, | |
| num_images_per_prompt, | |
| do_classifier_free_guidance, | |
| clip_image_embeddings, | |
| image_camera_embeddings, | |
| ) | |
| # 4. Prepare timesteps | |
| self.scheduler.set_timesteps(num_inference_steps, device=device) | |
| timesteps = self.scheduler.timesteps | |
| # 5. Prepare latent variables | |
| # num_channels_latents = self.unet.config.in_channels | |
| num_channels_latents = 4 # FIXME: hard-coded | |
| latents = self.prepare_latents( | |
| batch_size * num_images_per_prompt, | |
| num_channels_latents, | |
| height, | |
| width, | |
| image_embeddings.dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
| extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
| # 7. Denoising loop | |
| num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| # expand the latents if we are doing classifier free guidance | |
| latent_model_input = self._get_latent_model_input( | |
| latents, | |
| image, | |
| num_images_per_prompt, | |
| do_classifier_free_guidance, | |
| image_latents, | |
| ) | |
| latent_model_input = self.scheduler.scale_model_input( | |
| latent_model_input, t | |
| ) | |
| # predict the noise residual | |
| noise_pred = self.unet( | |
| latent_model_input, | |
| t, | |
| encoder_hidden_states=image_embeddings, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| ).sample | |
| # perform guidance | |
| if do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + guidance_scale * ( | |
| noise_pred_text - noise_pred_uncond | |
| ) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents = self.scheduler.step( | |
| noise_pred, t, latents, **extra_step_kwargs | |
| ).prev_sample | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ( | |
| (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0 | |
| ): | |
| progress_bar.update() | |
| if callback is not None and i % callback_steps == 0: | |
| callback(i, t, latents) | |
| if not output_type == "latent": | |
| image = self.vae.decode( | |
| latents / self.vae.config.scaling_factor, return_dict=False | |
| )[0] | |
| image, has_nsfw_concept = self.run_safety_checker( | |
| image, device, image_embeddings.dtype | |
| ) | |
| else: | |
| image = latents | |
| has_nsfw_concept = None | |
| if has_nsfw_concept is None: | |
| do_denormalize = [True] * image.shape[0] | |
| else: | |
| do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] | |
| image = self.image_processor.postprocess( | |
| image, output_type=output_type, do_denormalize=do_denormalize | |
| ) | |
| if not return_dict: | |
| return (image, has_nsfw_concept) | |
| return StableDiffusionPipelineOutput( | |
| images=image, nsfw_content_detected=has_nsfw_concept | |
| ) |