Spaces:
Configuration error
Configuration error
| import math | |
| import numpy as np | |
| import torch | |
| from diff_gaussian_rasterization import ( | |
| GaussianRasterizationSettings, | |
| GaussianRasterizer, | |
| ) | |
| from sh_utils import eval_sh, SH2RGB, RGB2SH | |
| from gaussian_model_4d import GaussianModel, BasicPointCloud | |
| def getProjectionMatrix(znear, zfar, fovX, fovY): | |
| tanHalfFovY = math.tan((fovY / 2)) | |
| tanHalfFovX = math.tan((fovX / 2)) | |
| P = torch.zeros(4, 4) | |
| z_sign = 1.0 | |
| P[0, 0] = 1 / tanHalfFovX | |
| P[1, 1] = 1 / tanHalfFovY | |
| P[3, 2] = z_sign | |
| P[2, 2] = z_sign * zfar / (zfar - znear) | |
| P[2, 3] = -(zfar * znear) / (zfar - znear) | |
| return P | |
| class MiniCam: | |
| def __init__(self, c2w, width, height, fovy, fovx, znear, zfar, time=0, gs_convention=True): | |
| # c2w (pose) should be in NeRF convention. | |
| self.image_width = width | |
| self.image_height = height | |
| self.FoVy = fovy | |
| self.FoVx = fovx | |
| self.znear = znear | |
| self.zfar = zfar | |
| w2c = np.linalg.inv(c2w) | |
| if gs_convention: | |
| # rectify... | |
| w2c[1:3, :3] *= -1 | |
| w2c[:3, 3] *= -1 | |
| self.world_view_transform = torch.tensor(w2c).transpose(0, 1).cuda() | |
| self.projection_matrix = ( | |
| getProjectionMatrix( | |
| znear=self.znear, zfar=self.zfar, fovX=self.FoVx, fovY=self.FoVy | |
| ) | |
| .transpose(0, 1) | |
| .cuda() | |
| ) | |
| self.full_proj_transform = self.world_view_transform @ self.projection_matrix | |
| self.camera_center = -torch.tensor(c2w[:3, 3]).cuda() | |
| self.time = time | |
| class Renderer: | |
| def __init__(self, opt, sh_degree=3, white_background=True, radius=1): | |
| self.sh_degree = sh_degree | |
| self.white_background = white_background | |
| self.radius = radius | |
| self.opt = opt | |
| self.T = self.opt.batch_size | |
| self.gaussians = GaussianModel(sh_degree, opt.deformation) | |
| self.bg_color = torch.tensor( | |
| [1, 1, 1] if white_background else [0, 0, 0], | |
| dtype=torch.float32, | |
| device="cuda", | |
| ) | |
| self.means3D_deform_T = None | |
| self.opacity_deform_T = None | |
| self.scales_deform_T = None | |
| self.rotations_deform_T = None | |
| def initialize(self, input=None, num_pts=5000, radius=0.5): | |
| # load checkpoint | |
| if input is None: | |
| # init from random point cloud | |
| phis = np.random.random((num_pts,)) * 2 * np.pi | |
| costheta = np.random.random((num_pts,)) * 2 - 1 | |
| thetas = np.arccos(costheta) | |
| mu = np.random.random((num_pts,)) | |
| radius = radius * np.cbrt(mu) | |
| x = radius * np.sin(thetas) * np.cos(phis) | |
| y = radius * np.sin(thetas) * np.sin(phis) | |
| z = radius * np.cos(thetas) | |
| xyz = np.stack((x, y, z), axis=1) | |
| # xyz = np.random.random((num_pts, 3)) * 2.6 - 1.3 | |
| shs = np.random.random((num_pts, 3)) / 255.0 | |
| pcd = BasicPointCloud( | |
| points=xyz, colors=SH2RGB(shs), normals=np.zeros((num_pts, 3)) | |
| ) | |
| # self.gaussians.create_from_pcd(pcd, 10) | |
| self.gaussians.create_from_pcd(pcd, 10, 1) | |
| elif isinstance(input, BasicPointCloud): | |
| # load from a provided pcd | |
| self.gaussians.create_from_pcd(input, 1) | |
| else: | |
| # load from saved ply | |
| self.gaussians.load_ply(input) | |
| def prepare_render( | |
| self, | |
| ): | |
| means3D = self.gaussians.get_xyz | |
| opacity = self.gaussians._opacity | |
| scales = self.gaussians._scaling | |
| rotations = self.gaussians._rotation | |
| means3D_T = [] | |
| opacity_T = [] | |
| scales_T = [] | |
| rotations_T = [] | |
| time_T = [] | |
| for t in range(self.T): | |
| time = torch.tensor(t).to(means3D.device).repeat(means3D.shape[0],1) | |
| time = ((time.float() / self.T) - 0.5) * 2 | |
| means3D_T.append(means3D) | |
| opacity_T.append(opacity) | |
| scales_T.append(scales) | |
| rotations_T.append(rotations) | |
| time_T.append(time) | |
| means3D_T = torch.cat(means3D_T) | |
| opacity_T = torch.cat(opacity_T) | |
| scales_T = torch.cat(scales_T) | |
| rotations_T = torch.cat(rotations_T) | |
| time_T = torch.cat(time_T) | |
| means3D_deform_T, scales_deform_T, rotations_deform_T, opacity_deform_T = self.gaussians._deformation(means3D_T, scales_T, | |
| rotations_T, opacity_T, | |
| time_T) # time is not none | |
| self.means3D_deform_T = means3D_deform_T.reshape([self.T, means3D_deform_T.shape[0]//self.T, -1]) | |
| self.opacity_deform_T = opacity_deform_T.reshape([self.T, means3D_deform_T.shape[0]//self.T, -1]) | |
| self.scales_deform_T = scales_deform_T.reshape([self.T, means3D_deform_T.shape[0]//self.T, -1]) | |
| self.rotations_deform_T = rotations_deform_T.reshape([self.T, means3D_deform_T.shape[0]//self.T, -1]) | |
| def prepare_render_4x( | |
| self, | |
| ): | |
| means3D = self.gaussians.get_xyz | |
| opacity = self.gaussians._opacity | |
| scales = self.gaussians._scaling | |
| rotations = self.gaussians._rotation | |
| means3D_T = [] | |
| opacity_T = [] | |
| scales_T = [] | |
| rotations_T = [] | |
| time_T = [] | |
| for t in range(self.T * 4): | |
| tt = t / 4. | |
| time = torch.tensor(tt).to(means3D.device).repeat(means3D.shape[0],1) | |
| time = ((time.float() / self.T) - 0.5) * 2 | |
| means3D_T.append(means3D) | |
| opacity_T.append(opacity) | |
| scales_T.append(scales) | |
| rotations_T.append(rotations) | |
| time_T.append(time) | |
| means3D_T = torch.cat(means3D_T) | |
| opacity_T = torch.cat(opacity_T) | |
| scales_T = torch.cat(scales_T) | |
| rotations_T = torch.cat(rotations_T) | |
| time_T = torch.cat(time_T) | |
| means3D_deform_T, scales_deform_T, rotations_deform_T, opacity_deform_T = self.gaussians._deformation(means3D_T, scales_T, | |
| rotations_T, opacity_T, | |
| time_T) # time is not none | |
| self.means3D_deform_T = means3D_deform_T.reshape([self.T *4, means3D_deform_T.shape[0]//self.T // 4, -1]) | |
| self.opacity_deform_T = opacity_deform_T.reshape([self.T*4, means3D_deform_T.shape[0]//self.T//4, -1]) | |
| self.scales_deform_T = scales_deform_T.reshape([self.T*4, means3D_deform_T.shape[0]//self.T//4, -1]) | |
| self.rotations_deform_T = rotations_deform_T.reshape([self.T*4, means3D_deform_T.shape[0]//self.T//4, -1]) | |
| def render( | |
| self, | |
| viewpoint_camera, | |
| scaling_modifier=1.0, | |
| bg_color=None, | |
| override_color=None, | |
| compute_cov3D_python=False, | |
| convert_SHs_python=False, | |
| ): | |
| # Create zero tensor. We will use it to make pytorch return gradients of the 2D (screen-space) means | |
| screenspace_points = ( | |
| torch.zeros_like( | |
| self.gaussians.get_xyz, | |
| dtype=self.gaussians.get_xyz.dtype, | |
| requires_grad=True, | |
| device="cuda", | |
| ) | |
| + 0 | |
| ) | |
| try: | |
| screenspace_points.retain_grad() | |
| except: | |
| pass | |
| # Set up rasterization configuration | |
| tanfovx = math.tan(viewpoint_camera.FoVx * 0.5) | |
| tanfovy = math.tan(viewpoint_camera.FoVy * 0.5) | |
| raster_settings = GaussianRasterizationSettings( | |
| image_height=int(viewpoint_camera.image_height), | |
| image_width=int(viewpoint_camera.image_width), | |
| tanfovx=tanfovx, | |
| tanfovy=tanfovy, | |
| bg=self.bg_color if bg_color is None else bg_color, | |
| scale_modifier=scaling_modifier, | |
| viewmatrix=viewpoint_camera.world_view_transform, | |
| projmatrix=viewpoint_camera.full_proj_transform, | |
| sh_degree=self.gaussians.active_sh_degree, | |
| campos=viewpoint_camera.camera_center, | |
| prefiltered=False, | |
| debug=False, | |
| ) | |
| rasterizer = GaussianRasterizer(raster_settings=raster_settings) | |
| means3D = self.gaussians.get_xyz | |
| time = torch.tensor(viewpoint_camera.time).to(means3D.device).repeat(means3D.shape[0],1) | |
| time = ((time.float() / self.T) - 0.5) * 2 | |
| means2D = screenspace_points | |
| opacity = self.gaussians._opacity | |
| # If precomputed 3d covariance is provided, use it. If not, then it will be computed from | |
| # scaling / rotation by the rasterizer. | |
| scales = None | |
| rotations = None | |
| cov3D_precomp = None | |
| if compute_cov3D_python: | |
| cov3D_precomp = self.gaussians.get_covariance(scaling_modifier) | |
| else: | |
| scales = self.gaussians._scaling | |
| rotations = self.gaussians._rotation | |
| means3D_deform, scales_deform, rotations_deform, opacity_deform = self.means3D_deform_T[viewpoint_camera.time], self.scales_deform_T[viewpoint_camera.time], self.rotations_deform_T[viewpoint_camera.time], self.opacity_deform_T[viewpoint_camera.time] | |
| means3D_final = means3D + means3D_deform | |
| rotations_final = rotations + rotations_deform | |
| scales_final = scales + scales_deform | |
| opacity_final = opacity + opacity_deform | |
| scales_final = self.gaussians.scaling_activation(scales_final) | |
| rotations_final = self.gaussians.rotation_activation(rotations_final) | |
| opacity = self.gaussians.opacity_activation(opacity) | |
| # If precomputed colors are provided, use them. Otherwise, if it is desired to precompute colors | |
| # from SHs in Python, do it. If not, then SH -> RGB conversion will be done by rasterizer. | |
| shs = None | |
| colors_precomp = None | |
| if colors_precomp is None: | |
| if convert_SHs_python: | |
| shs_view = self.gaussians.get_features.transpose(1, 2).view( | |
| -1, 3, (self.gaussians.max_sh_degree + 1) ** 2 | |
| ) | |
| dir_pp = self.gaussians.get_xyz - viewpoint_camera.camera_center.repeat( | |
| self.gaussians.get_features.shape[0], 1 | |
| ) | |
| dir_pp_normalized = dir_pp / dir_pp.norm(dim=1, keepdim=True) | |
| sh2rgb = eval_sh( | |
| self.gaussians.active_sh_degree, shs_view, dir_pp_normalized | |
| ) | |
| colors_precomp = torch.clamp_min(sh2rgb + 0.5, 0.0) | |
| else: | |
| shs = self.gaussians.get_features | |
| else: | |
| colors_precomp = override_color | |
| rendered_image, radii, rendered_depth, rendered_alpha = rasterizer( | |
| means3D = means3D_final, | |
| means2D = means2D, | |
| shs = shs, | |
| colors_precomp = colors_precomp, | |
| opacities = opacity, | |
| scales = scales_final, | |
| rotations = rotations_final, | |
| cov3D_precomp = cov3D_precomp) | |
| rendered_image = rendered_image.clamp(0, 1) | |
| # Those Gaussians that were frustum culled or had a radius of 0 were not visible. | |
| # They will be excluded from value updates used in the splitting criteria. | |
| return { | |
| "image": rendered_image, | |
| "depth": rendered_depth, | |
| "alpha": rendered_alpha, | |
| "viewspace_points": screenspace_points, | |
| "visibility_filter": radii > 0, | |
| "radii": radii, | |
| } | |