Spaces:
Runtime error
Runtime error
modify app
Browse files
app.py
CHANGED
|
@@ -7,6 +7,10 @@ from inference import MasteringStyleTransfer
|
|
| 7 |
from utils import download_youtube_audio
|
| 8 |
from config import args
|
| 9 |
import pyloudnorm as pyln
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
mastering_transfer = MasteringStyleTransfer(args)
|
| 12 |
|
|
@@ -87,35 +91,46 @@ def perform_ito(input_audio, reference_audio, ito_reference_audio, num_steps, op
|
|
| 87 |
initial_reference_feature = mastering_transfer.get_reference_embedding(reference_tensor)
|
| 88 |
|
| 89 |
ito_log = ""
|
| 90 |
-
|
|
|
|
| 91 |
input_tensor, ito_reference_tensor, ito_config, initial_reference_feature
|
| 92 |
):
|
| 93 |
ito_log += log_entry
|
| 94 |
ito_param_output = mastering_transfer.get_param_output_string(current_params)
|
|
|
|
| 95 |
|
| 96 |
# Convert current_output to numpy array if it's a tensor
|
| 97 |
if isinstance(current_output, torch.Tensor):
|
| 98 |
-
current_output = current_output.
|
| 99 |
|
| 100 |
-
#
|
| 101 |
-
|
| 102 |
|
| 103 |
# Denormalize the audio to int16
|
| 104 |
current_output = denormalize_audio(current_output, dtype=np.int16)
|
| 105 |
|
|
|
|
| 106 |
if current_output.ndim == 1:
|
| 107 |
current_output = current_output.reshape(-1, 1)
|
| 108 |
elif current_output.ndim > 2:
|
| 109 |
current_output = current_output.squeeze()
|
|
|
|
|
|
|
| 110 |
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
|
|
|
|
| 119 |
with gr.Blocks() as demo:
|
| 120 |
gr.Markdown("# Mastering Style Transfer Demo")
|
| 121 |
|
|
@@ -151,28 +166,12 @@ with gr.Blocks() as demo:
|
|
| 151 |
with gr.Row():
|
| 152 |
with gr.Column():
|
| 153 |
ito_output_audio = gr.Audio(label="ITO Output Audio")
|
| 154 |
-
ito_param_output = gr.Textbox(label="ITO Predicted Parameters", lines=
|
| 155 |
with gr.Column():
|
| 156 |
ito_steps_taken = gr.Number(label="ITO Steps Taken")
|
|
|
|
| 157 |
ito_log = gr.Textbox(label="ITO Log", lines=10)
|
| 158 |
|
| 159 |
-
# with gr.Row():
|
| 160 |
-
# with gr.Column(scale=2):
|
| 161 |
-
# ito_reference_audio = gr.Audio(label="ITO Reference Audio (optional)")
|
| 162 |
-
# num_steps = gr.Slider(minimum=1, maximum=100, value=10, step=1, label="Number of Steps")
|
| 163 |
-
# optimizer = gr.Dropdown(["Adam", "RAdam", "SGD"], value="RAdam", label="Optimizer")
|
| 164 |
-
# learning_rate = gr.Slider(minimum=0.0001, maximum=0.1, value=0.001, step=0.0001, label="Learning Rate")
|
| 165 |
-
# af_weights = gr.Textbox(label="AudioFeatureLoss Weights (comma-separated)", value="0.1,0.001,1.0,1.0,0.1")
|
| 166 |
-
|
| 167 |
-
# ito_button = gr.Button("Perform ITO")
|
| 168 |
-
|
| 169 |
-
# ito_output_audio = gr.Audio(label="ITO Output Audio")
|
| 170 |
-
# ito_param_output = gr.Textbox(label="ITO Predicted Parameters", lines=10)
|
| 171 |
-
# ito_steps_taken = gr.Number(label="ITO Steps Taken")
|
| 172 |
-
|
| 173 |
-
# with gr.Column(scale=1):
|
| 174 |
-
# ito_log = gr.Textbox(label="ITO Log", lines=30)
|
| 175 |
-
|
| 176 |
def run_ito(input_audio, reference_audio, ito_reference_audio, num_steps, optimizer, learning_rate, af_weights):
|
| 177 |
af_weights = [float(w.strip()) for w in af_weights.split(',')]
|
| 178 |
ito_generator = perform_ito(
|
|
@@ -186,134 +185,22 @@ with gr.Blocks() as demo:
|
|
| 186 |
final_log = ""
|
| 187 |
|
| 188 |
# Iterate through the generator to get the final results
|
| 189 |
-
for audio, params, steps, log in ito_generator:
|
| 190 |
final_audio = audio
|
| 191 |
final_params = params
|
| 192 |
final_steps = steps
|
| 193 |
final_log = log
|
|
|
|
|
|
|
|
|
|
| 194 |
|
| 195 |
-
return final_audio, final_params, final_steps, final_log
|
| 196 |
|
| 197 |
ito_button.click(
|
| 198 |
run_ito,
|
| 199 |
inputs=[input_audio, reference_audio, ito_reference_audio, num_steps, optimizer, learning_rate, af_weights],
|
| 200 |
-
outputs=[ito_output_audio, ito_param_output, ito_steps_taken, ito_log]
|
| 201 |
)
|
| 202 |
|
| 203 |
demo.launch()
|
| 204 |
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
# import gradio as gr
|
| 209 |
-
# import torch
|
| 210 |
-
# import soundfile as sf
|
| 211 |
-
# import numpy as np
|
| 212 |
-
# import yaml
|
| 213 |
-
# from inference import MasteringStyleTransfer
|
| 214 |
-
# from utils import download_youtube_audio
|
| 215 |
-
# from config import args
|
| 216 |
-
|
| 217 |
-
# mastering_transfer = MasteringStyleTransfer(args)
|
| 218 |
-
|
| 219 |
-
# def process_audio(input_audio, reference_audio, perform_ito, ito_reference_audio=None):
|
| 220 |
-
# # Process the audio files
|
| 221 |
-
# output_audio, predicted_params, ito_output_audio, ito_predicted_params, ito_log, sr = mastering_transfer.process_audio(
|
| 222 |
-
# input_audio, reference_audio, ito_reference_audio if ito_reference_audio else reference_audio, {}, perform_ito
|
| 223 |
-
# )
|
| 224 |
-
|
| 225 |
-
# # Generate parameter output strings
|
| 226 |
-
# param_output = mastering_transfer.get_param_output_string(predicted_params)
|
| 227 |
-
# ito_param_output = mastering_transfer.get_param_output_string(ito_predicted_params) if ito_predicted_params is not None else "ITO not performed"
|
| 228 |
-
|
| 229 |
-
# # Generate top 10 differences if ITO was performed
|
| 230 |
-
# top_10_diff = mastering_transfer.get_top_10_diff_string(predicted_params, ito_predicted_params) if ito_predicted_params is not None else "ITO not performed"
|
| 231 |
-
|
| 232 |
-
# return "output_mastered.wav", "ito_output_mastered.wav" if ito_output_audio is not None else None, param_output, ito_param_output, top_10_diff, ito_log
|
| 233 |
-
|
| 234 |
-
# def process_with_ito(input_audio, reference_audio, perform_ito, use_same_reference, ito_reference_audio):
|
| 235 |
-
# ito_ref = reference_audio if use_same_reference else ito_reference_audio
|
| 236 |
-
# return process_audio(input_audio, reference_audio, perform_ito, ito_ref)
|
| 237 |
-
|
| 238 |
-
# def process_youtube_with_ito(input_url, reference_url, perform_ito, use_same_reference, ito_reference_url):
|
| 239 |
-
# input_audio = download_youtube_audio(input_url)
|
| 240 |
-
# reference_audio = download_youtube_audio(reference_url)
|
| 241 |
-
# ito_ref = reference_audio if use_same_reference else download_youtube_audio(ito_reference_url)
|
| 242 |
-
|
| 243 |
-
# output_audio, predicted_params, ito_output_audio, ito_predicted_params, ito_log, sr = mastering_transfer.process_audio(
|
| 244 |
-
# input_audio, reference_audio, ito_ref, {}, perform_ito, log_ito=True
|
| 245 |
-
# )
|
| 246 |
-
|
| 247 |
-
# param_output = mastering_transfer.get_param_output_string(predicted_params)
|
| 248 |
-
# ito_param_output = mastering_transfer.get_param_output_string(ito_predicted_params) if ito_predicted_params is not None else "ITO not performed"
|
| 249 |
-
# top_10_diff = mastering_transfer.get_top_10_diff_string(predicted_params, ito_predicted_params) if ito_predicted_params is not None else "ITO not performed"
|
| 250 |
-
|
| 251 |
-
# return "output_mastered_yt.wav", "ito_output_mastered_yt.wav" if ito_output_audio is not None else None, param_output, ito_param_output, top_10_diff, ito_log
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
# with gr.Blocks() as demo:
|
| 255 |
-
# gr.Markdown("# Mastering Style Transfer Demo")
|
| 256 |
-
|
| 257 |
-
# with gr.Tab("Upload Audio"):
|
| 258 |
-
# input_audio = gr.Audio(label="Input Audio")
|
| 259 |
-
# reference_audio = gr.Audio(label="Reference Audio")
|
| 260 |
-
# perform_ito = gr.Checkbox(label="Perform ITO")
|
| 261 |
-
# with gr.Column(visible=False) as ito_options:
|
| 262 |
-
# use_same_reference = gr.Checkbox(label="Use same reference audio for ITO", value=True)
|
| 263 |
-
# ito_reference_audio = gr.Audio(label="ITO Reference Audio", visible=False)
|
| 264 |
-
|
| 265 |
-
# def update_ito_options(perform_ito):
|
| 266 |
-
# return gr.Column.update(visible=perform_ito)
|
| 267 |
-
|
| 268 |
-
# def update_ito_reference(use_same):
|
| 269 |
-
# return gr.Audio.update(visible=not use_same)
|
| 270 |
-
|
| 271 |
-
# perform_ito.change(fn=update_ito_options, inputs=perform_ito, outputs=ito_options)
|
| 272 |
-
# use_same_reference.change(fn=update_ito_reference, inputs=use_same_reference, outputs=ito_reference_audio)
|
| 273 |
-
|
| 274 |
-
# submit_button = gr.Button("Process")
|
| 275 |
-
# output_audio = gr.Audio(label="Output Audio")
|
| 276 |
-
# ito_output_audio = gr.Audio(label="ITO Output Audio")
|
| 277 |
-
# param_output = gr.Textbox(label="Predicted Parameters", lines=10)
|
| 278 |
-
# ito_param_output = gr.Textbox(label="ITO Predicted Parameters", lines=10)
|
| 279 |
-
# top_10_diff = gr.Textbox(label="Top 10 Parameter Differences", lines=10)
|
| 280 |
-
# ito_log = gr.Textbox(label="ITO Log", lines=20)
|
| 281 |
-
|
| 282 |
-
# submit_button.click(
|
| 283 |
-
# process_with_ito,
|
| 284 |
-
# inputs=[input_audio, reference_audio, perform_ito, use_same_reference, ito_reference_audio],
|
| 285 |
-
# outputs=[output_audio, ito_output_audio, param_output, ito_param_output, top_10_diff, ito_log]
|
| 286 |
-
# )
|
| 287 |
-
|
| 288 |
-
# with gr.Tab("YouTube URLs"):
|
| 289 |
-
# input_url = gr.Textbox(label="Input YouTube URL")
|
| 290 |
-
# reference_url = gr.Textbox(label="Reference YouTube URL")
|
| 291 |
-
# perform_ito_yt = gr.Checkbox(label="Perform ITO")
|
| 292 |
-
# with gr.Column(visible=False) as ito_options_yt:
|
| 293 |
-
# use_same_reference_yt = gr.Checkbox(label="Use same reference audio for ITO", value=True)
|
| 294 |
-
# ito_reference_url = gr.Textbox(label="ITO Reference YouTube URL", visible=False)
|
| 295 |
-
|
| 296 |
-
# def update_ito_options_yt(perform_ito):
|
| 297 |
-
# return gr.Column.update(visible=perform_ito)
|
| 298 |
-
|
| 299 |
-
# def update_ito_reference_yt(use_same):
|
| 300 |
-
# return gr.Textbox.update(visible=not use_same)
|
| 301 |
-
|
| 302 |
-
# perform_ito_yt.change(fn=update_ito_options_yt, inputs=perform_ito_yt, outputs=ito_options_yt)
|
| 303 |
-
# use_same_reference_yt.change(fn=update_ito_reference_yt, inputs=use_same_reference_yt, outputs=ito_reference_url)
|
| 304 |
-
|
| 305 |
-
# submit_button_yt = gr.Button("Process")
|
| 306 |
-
# output_audio_yt = gr.Audio(label="Output Audio")
|
| 307 |
-
# ito_output_audio_yt = gr.Audio(label="ITO Output Audio")
|
| 308 |
-
# param_output_yt = gr.Textbox(label="Predicted Parameters", lines=10)
|
| 309 |
-
# ito_param_output_yt = gr.Textbox(label="ITO Predicted Parameters", lines=10)
|
| 310 |
-
# top_10_diff_yt = gr.Textbox(label="Top 10 Parameter Differences", lines=10)
|
| 311 |
-
# ito_log_yt = gr.Textbox(label="ITO Log", lines=20)
|
| 312 |
-
|
| 313 |
-
# submit_button_yt.click(
|
| 314 |
-
# process_youtube_with_ito,
|
| 315 |
-
# inputs=[input_url, reference_url, perform_ito_yt, use_same_reference_yt, ito_reference_url],
|
| 316 |
-
# outputs=[output_audio_yt, ito_output_audio_yt, param_output_yt, ito_param_output_yt, top_10_diff_yt, ito_log_yt]
|
| 317 |
-
# )
|
| 318 |
-
|
| 319 |
-
# demo.launch()
|
|
|
|
| 7 |
from utils import download_youtube_audio
|
| 8 |
from config import args
|
| 9 |
import pyloudnorm as pyln
|
| 10 |
+
import tempfile
|
| 11 |
+
import os
|
| 12 |
+
import matplotlib.pyplot as plt
|
| 13 |
+
import io
|
| 14 |
|
| 15 |
mastering_transfer = MasteringStyleTransfer(args)
|
| 16 |
|
|
|
|
| 91 |
initial_reference_feature = mastering_transfer.get_reference_embedding(reference_tensor)
|
| 92 |
|
| 93 |
ito_log = ""
|
| 94 |
+
loss_values = []
|
| 95 |
+
for log_entry, current_output, current_params, step, loss in mastering_transfer.inference_time_optimization(
|
| 96 |
input_tensor, ito_reference_tensor, ito_config, initial_reference_feature
|
| 97 |
):
|
| 98 |
ito_log += log_entry
|
| 99 |
ito_param_output = mastering_transfer.get_param_output_string(current_params)
|
| 100 |
+
loss_values.append(loss)
|
| 101 |
|
| 102 |
# Convert current_output to numpy array if it's a tensor
|
| 103 |
if isinstance(current_output, torch.Tensor):
|
| 104 |
+
current_output = current_output.cpu().numpy()
|
| 105 |
|
| 106 |
+
# Normalize output audio
|
| 107 |
+
current_output = loudness_normalize(current_output, args.sample_rate)
|
| 108 |
|
| 109 |
# Denormalize the audio to int16
|
| 110 |
current_output = denormalize_audio(current_output, dtype=np.int16)
|
| 111 |
|
| 112 |
+
# Ensure the audio is in the correct shape (samples, channels)
|
| 113 |
if current_output.ndim == 1:
|
| 114 |
current_output = current_output.reshape(-1, 1)
|
| 115 |
elif current_output.ndim > 2:
|
| 116 |
current_output = current_output.squeeze()
|
| 117 |
+
|
| 118 |
+
yield (args.sample_rate, current_output), ito_param_output, step, ito_log, loss_values
|
| 119 |
|
| 120 |
+
def plot_loss_curve(loss_values):
|
| 121 |
+
plt.figure(figsize=(10, 6))
|
| 122 |
+
plt.plot(loss_values)
|
| 123 |
+
plt.title('ITO Loss Curve')
|
| 124 |
+
plt.xlabel('Step')
|
| 125 |
+
plt.ylabel('Loss')
|
| 126 |
+
plt.grid(True)
|
| 127 |
+
|
| 128 |
+
buf = io.BytesIO()
|
| 129 |
+
plt.savefig(buf, format='png')
|
| 130 |
+
buf.seek(0)
|
| 131 |
+
return buf
|
| 132 |
|
| 133 |
+
""" APP display """
|
| 134 |
with gr.Blocks() as demo:
|
| 135 |
gr.Markdown("# Mastering Style Transfer Demo")
|
| 136 |
|
|
|
|
| 166 |
with gr.Row():
|
| 167 |
with gr.Column():
|
| 168 |
ito_output_audio = gr.Audio(label="ITO Output Audio")
|
| 169 |
+
ito_param_output = gr.Textbox(label="ITO Predicted Parameters", lines=15)
|
| 170 |
with gr.Column():
|
| 171 |
ito_steps_taken = gr.Number(label="ITO Steps Taken")
|
| 172 |
+
ito_loss_plot = gr.Image(label="ITO Loss Curve")
|
| 173 |
ito_log = gr.Textbox(label="ITO Log", lines=10)
|
| 174 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 175 |
def run_ito(input_audio, reference_audio, ito_reference_audio, num_steps, optimizer, learning_rate, af_weights):
|
| 176 |
af_weights = [float(w.strip()) for w in af_weights.split(',')]
|
| 177 |
ito_generator = perform_ito(
|
|
|
|
| 185 |
final_log = ""
|
| 186 |
|
| 187 |
# Iterate through the generator to get the final results
|
| 188 |
+
for audio, params, steps, log, losses in ito_generator:
|
| 189 |
final_audio = audio
|
| 190 |
final_params = params
|
| 191 |
final_steps = steps
|
| 192 |
final_log = log
|
| 193 |
+
loss_values = losses
|
| 194 |
+
|
| 195 |
+
loss_plot = plot_loss_curve(loss_values)
|
| 196 |
|
| 197 |
+
return final_audio, final_params, final_steps, final_log, loss_plot
|
| 198 |
|
| 199 |
ito_button.click(
|
| 200 |
run_ito,
|
| 201 |
inputs=[input_audio, reference_audio, ito_reference_audio, num_steps, optimizer, learning_rate, af_weights],
|
| 202 |
+
outputs=[ito_output_audio, ito_param_output, ito_steps_taken, ito_log, ito_loss_plot]
|
| 203 |
)
|
| 204 |
|
| 205 |
demo.launch()
|
| 206 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|