Spaces:
Sleeping
Sleeping
Move initialization process to init_per()
Browse files- evaluation/svs_eval.py +14 -11
evaluation/svs_eval.py
CHANGED
|
@@ -4,16 +4,9 @@ import numpy as np
|
|
| 4 |
import torch
|
| 5 |
import uuid
|
| 6 |
from pathlib import Path
|
| 7 |
-
from transformers import pipeline
|
| 8 |
-
import jiwer
|
| 9 |
|
| 10 |
# ----------- Initialization -----------
|
| 11 |
|
| 12 |
-
asr_pipeline = pipeline(
|
| 13 |
-
"automatic-speech-recognition",
|
| 14 |
-
model="openai/whisper-large-v3-turbo"
|
| 15 |
-
)
|
| 16 |
-
|
| 17 |
def init_singmos():
|
| 18 |
print("[Init] Loading SingMOS...")
|
| 19 |
return torch.hub.load(
|
|
@@ -29,7 +22,17 @@ def init_basic_pitch():
|
|
| 29 |
|
| 30 |
|
| 31 |
def init_per():
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
|
| 35 |
def init_audiobox_aesthetics():
|
|
@@ -103,15 +106,15 @@ def pypinyin_g2p_phone_without_prosody(text):
|
|
| 103 |
return phones
|
| 104 |
|
| 105 |
|
| 106 |
-
def eval_per(audio_path, reference_text,
|
| 107 |
audio_array, sr = librosa.load(audio_path, sr=16000)
|
| 108 |
-
asr_result = asr_pipeline(
|
| 109 |
audio_array,
|
| 110 |
generate_kwargs={"language": "mandarin"}
|
| 111 |
)['text']
|
| 112 |
hyp_pinyin = pypinyin_g2p_phone_without_prosody(asr_result)
|
| 113 |
ref_pinyin = pypinyin_g2p_phone_without_prosody(reference_text)
|
| 114 |
-
per = jiwer.wer(ref_pinyin, hyp_pinyin)
|
| 115 |
return {"per": per}
|
| 116 |
|
| 117 |
|
|
|
|
| 4 |
import torch
|
| 5 |
import uuid
|
| 6 |
from pathlib import Path
|
|
|
|
|
|
|
| 7 |
|
| 8 |
# ----------- Initialization -----------
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
def init_singmos():
|
| 11 |
print("[Init] Loading SingMOS...")
|
| 12 |
return torch.hub.load(
|
|
|
|
| 22 |
|
| 23 |
|
| 24 |
def init_per():
|
| 25 |
+
print("[Init] Loading PER...")
|
| 26 |
+
from transformers import pipeline
|
| 27 |
+
import jiwer
|
| 28 |
+
asr_pipeline = pipeline(
|
| 29 |
+
"automatic-speech-recognition",
|
| 30 |
+
model="openai/whisper-large-v3-turbo"
|
| 31 |
+
)
|
| 32 |
+
return {
|
| 33 |
+
"asr_pipeline": asr_pipeline,
|
| 34 |
+
"jiwer": jiwer,
|
| 35 |
+
}
|
| 36 |
|
| 37 |
|
| 38 |
def init_audiobox_aesthetics():
|
|
|
|
| 106 |
return phones
|
| 107 |
|
| 108 |
|
| 109 |
+
def eval_per(audio_path, reference_text, evaluator=None):
|
| 110 |
audio_array, sr = librosa.load(audio_path, sr=16000)
|
| 111 |
+
asr_result = evaluator['asr_pipeline'](
|
| 112 |
audio_array,
|
| 113 |
generate_kwargs={"language": "mandarin"}
|
| 114 |
)['text']
|
| 115 |
hyp_pinyin = pypinyin_g2p_phone_without_prosody(asr_result)
|
| 116 |
ref_pinyin = pypinyin_g2p_phone_without_prosody(reference_text)
|
| 117 |
+
per = evaluator['jiwer'].wer(ref_pinyin, hyp_pinyin)
|
| 118 |
return {"per": per}
|
| 119 |
|
| 120 |
|