Spaces:
Paused
Paused
| import os | |
| from typing import TYPE_CHECKING, List | |
| import torch | |
| import torchvision | |
| import yaml | |
| from toolkit import train_tools | |
| from toolkit.config_modules import GenerateImageConfig, ModelConfig | |
| from PIL import Image | |
| from toolkit.models.base_model import BaseModel | |
| from diffusers import FluxTransformer2DModel, AutoencoderKL, FluxKontextPipeline | |
| from toolkit.basic import flush | |
| from toolkit.prompt_utils import PromptEmbeds | |
| from toolkit.samplers.custom_flowmatch_sampler import CustomFlowMatchEulerDiscreteScheduler | |
| from toolkit.models.flux import add_model_gpu_splitter_to_flux, bypass_flux_guidance, restore_flux_guidance | |
| from toolkit.dequantize import patch_dequantization_on_save | |
| from toolkit.accelerator import get_accelerator, unwrap_model | |
| from optimum.quanto import freeze, QTensor | |
| from toolkit.util.mask import generate_random_mask, random_dialate_mask | |
| from toolkit.util.quantize import quantize, get_qtype | |
| from transformers import T5TokenizerFast, T5EncoderModel, CLIPTextModel, CLIPTokenizer | |
| from einops import rearrange, repeat | |
| import random | |
| import torch.nn.functional as F | |
| if TYPE_CHECKING: | |
| from toolkit.data_transfer_object.data_loader import DataLoaderBatchDTO | |
| scheduler_config = { | |
| "base_image_seq_len": 256, | |
| "base_shift": 0.5, | |
| "max_image_seq_len": 4096, | |
| "max_shift": 1.15, | |
| "num_train_timesteps": 1000, | |
| "shift": 3.0, | |
| "use_dynamic_shifting": True | |
| } | |
| class FluxKontextModel(BaseModel): | |
| arch = "flux_kontext" | |
| def __init__( | |
| self, | |
| device, | |
| model_config: ModelConfig, | |
| dtype='bf16', | |
| custom_pipeline=None, | |
| noise_scheduler=None, | |
| **kwargs | |
| ): | |
| super().__init__( | |
| device, | |
| model_config, | |
| dtype, | |
| custom_pipeline, | |
| noise_scheduler, | |
| **kwargs | |
| ) | |
| self.is_flow_matching = True | |
| self.is_transformer = True | |
| self.target_lora_modules = ['FluxTransformer2DModel'] | |
| # static method to get the noise scheduler | |
| def get_train_scheduler(): | |
| return CustomFlowMatchEulerDiscreteScheduler(**scheduler_config) | |
| def get_bucket_divisibility(self): | |
| return 16 | |
| def load_model(self): | |
| dtype = self.torch_dtype | |
| self.print_and_status_update("Loading Flux Kontext model") | |
| # will be updated if we detect a existing checkpoint in training folder | |
| model_path = self.model_config.name_or_path | |
| # this is the original path put in the model directory | |
| # it is here because for finetuning we only save the transformer usually | |
| # so we need this for the VAE, te, etc | |
| base_model_path = self.model_config.extras_name_or_path | |
| transformer_path = model_path | |
| transformer_subfolder = 'transformer' | |
| if os.path.exists(transformer_path): | |
| transformer_subfolder = None | |
| transformer_path = os.path.join(transformer_path, 'transformer') | |
| # check if the path is a full checkpoint. | |
| te_folder_path = os.path.join(model_path, 'text_encoder') | |
| # if we have the te, this folder is a full checkpoint, use it as the base | |
| if os.path.exists(te_folder_path): | |
| base_model_path = model_path | |
| self.print_and_status_update("Loading transformer") | |
| transformer = FluxTransformer2DModel.from_pretrained( | |
| transformer_path, | |
| subfolder=transformer_subfolder, | |
| torch_dtype=dtype | |
| ) | |
| transformer.to(self.quantize_device, dtype=dtype) | |
| if self.model_config.quantize: | |
| # patch the state dict method | |
| patch_dequantization_on_save(transformer) | |
| quantization_type = get_qtype(self.model_config.qtype) | |
| self.print_and_status_update("Quantizing transformer") | |
| quantize(transformer, weights=quantization_type, | |
| **self.model_config.quantize_kwargs) | |
| freeze(transformer) | |
| transformer.to(self.device_torch) | |
| else: | |
| transformer.to(self.device_torch, dtype=dtype) | |
| flush() | |
| self.print_and_status_update("Loading T5") | |
| tokenizer_2 = T5TokenizerFast.from_pretrained( | |
| base_model_path, subfolder="tokenizer_2", torch_dtype=dtype | |
| ) | |
| text_encoder_2 = T5EncoderModel.from_pretrained( | |
| base_model_path, subfolder="text_encoder_2", torch_dtype=dtype | |
| ) | |
| text_encoder_2.to(self.device_torch, dtype=dtype) | |
| flush() | |
| if self.model_config.quantize_te: | |
| self.print_and_status_update("Quantizing T5") | |
| quantize(text_encoder_2, weights=get_qtype( | |
| self.model_config.qtype)) | |
| freeze(text_encoder_2) | |
| flush() | |
| self.print_and_status_update("Loading CLIP") | |
| text_encoder = CLIPTextModel.from_pretrained( | |
| base_model_path, subfolder="text_encoder", torch_dtype=dtype) | |
| tokenizer = CLIPTokenizer.from_pretrained( | |
| base_model_path, subfolder="tokenizer", torch_dtype=dtype) | |
| text_encoder.to(self.device_torch, dtype=dtype) | |
| self.print_and_status_update("Loading VAE") | |
| vae = AutoencoderKL.from_pretrained( | |
| base_model_path, subfolder="vae", torch_dtype=dtype) | |
| self.noise_scheduler = FluxKontextModel.get_train_scheduler() | |
| self.print_and_status_update("Making pipe") | |
| pipe: FluxKontextPipeline = FluxKontextPipeline( | |
| scheduler=self.noise_scheduler, | |
| text_encoder=text_encoder, | |
| tokenizer=tokenizer, | |
| text_encoder_2=None, | |
| tokenizer_2=tokenizer_2, | |
| vae=vae, | |
| transformer=None, | |
| ) | |
| # for quantization, it works best to do these after making the pipe | |
| pipe.text_encoder_2 = text_encoder_2 | |
| pipe.transformer = transformer | |
| self.print_and_status_update("Preparing Model") | |
| text_encoder = [pipe.text_encoder, pipe.text_encoder_2] | |
| tokenizer = [pipe.tokenizer, pipe.tokenizer_2] | |
| pipe.transformer = pipe.transformer.to(self.device_torch) | |
| flush() | |
| # just to make sure everything is on the right device and dtype | |
| text_encoder[0].to(self.device_torch) | |
| text_encoder[0].requires_grad_(False) | |
| text_encoder[0].eval() | |
| text_encoder[1].to(self.device_torch) | |
| text_encoder[1].requires_grad_(False) | |
| text_encoder[1].eval() | |
| pipe.transformer = pipe.transformer.to(self.device_torch) | |
| flush() | |
| # save it to the model class | |
| self.vae = vae | |
| self.text_encoder = text_encoder # list of text encoders | |
| self.tokenizer = tokenizer # list of tokenizers | |
| self.model = pipe.transformer | |
| self.pipeline = pipe | |
| self.print_and_status_update("Model Loaded") | |
| def get_generation_pipeline(self): | |
| scheduler = FluxKontextModel.get_train_scheduler() | |
| pipeline: FluxKontextPipeline = FluxKontextPipeline( | |
| scheduler=scheduler, | |
| text_encoder=unwrap_model(self.text_encoder[0]), | |
| tokenizer=self.tokenizer[0], | |
| text_encoder_2=unwrap_model(self.text_encoder[1]), | |
| tokenizer_2=self.tokenizer[1], | |
| vae=unwrap_model(self.vae), | |
| transformer=unwrap_model(self.transformer) | |
| ) | |
| pipeline = pipeline.to(self.device_torch) | |
| return pipeline | |
| def generate_single_image( | |
| self, | |
| pipeline: FluxKontextPipeline, | |
| gen_config: GenerateImageConfig, | |
| conditional_embeds: PromptEmbeds, | |
| unconditional_embeds: PromptEmbeds, | |
| generator: torch.Generator, | |
| extra: dict, | |
| ): | |
| if gen_config.ctrl_img is None: | |
| raise ValueError( | |
| "Control image is required for Flux Kontext model generation." | |
| ) | |
| else: | |
| control_img = Image.open(gen_config.ctrl_img) | |
| control_img = control_img.convert("RGB") | |
| # resize to width and height | |
| if control_img.size != (gen_config.width, gen_config.height): | |
| control_img = control_img.resize( | |
| (gen_config.width, gen_config.height), Image.BILINEAR | |
| ) | |
| gen_config.width = int(gen_config.width // 16 * 16) | |
| gen_config.height = int(gen_config.height // 16 * 16) | |
| img = pipeline( | |
| image=control_img, | |
| prompt_embeds=conditional_embeds.text_embeds, | |
| pooled_prompt_embeds=conditional_embeds.pooled_embeds, | |
| height=gen_config.height, | |
| width=gen_config.width, | |
| num_inference_steps=gen_config.num_inference_steps, | |
| guidance_scale=gen_config.guidance_scale, | |
| latents=gen_config.latents, | |
| generator=generator, | |
| max_area=gen_config.height * gen_config.width, | |
| _auto_resize=False, | |
| **extra | |
| ).images[0] | |
| return img | |
| def get_noise_prediction( | |
| self, | |
| latent_model_input: torch.Tensor, | |
| timestep: torch.Tensor, # 0 to 1000 scale | |
| text_embeddings: PromptEmbeds, | |
| guidance_embedding_scale: float, | |
| bypass_guidance_embedding: bool, | |
| **kwargs | |
| ): | |
| with torch.no_grad(): | |
| bs, c, h, w = latent_model_input.shape | |
| # if we have a control on the channel dimension, put it on the batch for packing | |
| has_control = False | |
| if latent_model_input.shape[1] == 32: | |
| # chunk it and stack it on batch dimension | |
| # dont update batch size for img_its | |
| lat, control = torch.chunk(latent_model_input, 2, dim=1) | |
| latent_model_input = torch.cat([lat, control], dim=0) | |
| has_control = True | |
| latent_model_input_packed = rearrange( | |
| latent_model_input, | |
| "b c (h ph) (w pw) -> b (h w) (c ph pw)", | |
| ph=2, | |
| pw=2 | |
| ) | |
| img_ids = torch.zeros(h // 2, w // 2, 3) | |
| img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None] | |
| img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :] | |
| img_ids = repeat(img_ids, "h w c -> b (h w) c", | |
| b=bs).to(self.device_torch) | |
| # handle control image ids | |
| if has_control: | |
| ctrl_ids = img_ids.clone() | |
| ctrl_ids[..., 0] = 1 | |
| img_ids = torch.cat([img_ids, ctrl_ids], dim=1) | |
| txt_ids = torch.zeros( | |
| bs, text_embeddings.text_embeds.shape[1], 3).to(self.device_torch) | |
| # # handle guidance | |
| if self.unet_unwrapped.config.guidance_embeds: | |
| if isinstance(guidance_embedding_scale, list): | |
| guidance = torch.tensor( | |
| guidance_embedding_scale, device=self.device_torch) | |
| else: | |
| guidance = torch.tensor( | |
| [guidance_embedding_scale], device=self.device_torch) | |
| # Expand guidance to match original batch_size | |
| guidance = guidance.expand(bs) | |
| else: | |
| guidance = None | |
| if bypass_guidance_embedding: | |
| bypass_flux_guidance(self.unet) | |
| cast_dtype = self.unet.dtype | |
| # changes from orig implementation | |
| if txt_ids.ndim == 3: | |
| txt_ids = txt_ids[0] | |
| if img_ids.ndim == 3: | |
| img_ids = img_ids[0] | |
| latent_size = latent_model_input_packed.shape[1] | |
| # move the kontext channels. We have them on batch dimension to here, but need to put them on the latent dimension | |
| if has_control: | |
| latent, control = torch.chunk(latent_model_input_packed, 2, dim=0) | |
| latent_model_input_packed = torch.cat( | |
| [latent, control], dim=1 | |
| ) | |
| latent_size = latent.shape[1] | |
| noise_pred = self.unet( | |
| hidden_states=latent_model_input_packed.to( | |
| self.device_torch, cast_dtype), | |
| timestep=timestep / 1000, | |
| encoder_hidden_states=text_embeddings.text_embeds.to( | |
| self.device_torch, cast_dtype), | |
| pooled_projections=text_embeddings.pooled_embeds.to( | |
| self.device_torch, cast_dtype), | |
| txt_ids=txt_ids, | |
| img_ids=img_ids, | |
| guidance=guidance, | |
| return_dict=False, | |
| **kwargs, | |
| )[0] | |
| # remove kontext image conditioning | |
| noise_pred = noise_pred[:, :latent_size] | |
| if isinstance(noise_pred, QTensor): | |
| noise_pred = noise_pred.dequantize() | |
| noise_pred = rearrange( | |
| noise_pred, | |
| "b (h w) (c ph pw) -> b c (h ph) (w pw)", | |
| h=latent_model_input.shape[2] // 2, | |
| w=latent_model_input.shape[3] // 2, | |
| ph=2, | |
| pw=2, | |
| c=self.vae.config.latent_channels | |
| ) | |
| if bypass_guidance_embedding: | |
| restore_flux_guidance(self.unet) | |
| return noise_pred | |
| def get_prompt_embeds(self, prompt: str) -> PromptEmbeds: | |
| if self.pipeline.text_encoder.device != self.device_torch: | |
| self.pipeline.text_encoder.to(self.device_torch) | |
| prompt_embeds, pooled_prompt_embeds = train_tools.encode_prompts_flux( | |
| self.tokenizer, | |
| self.text_encoder, | |
| prompt, | |
| max_length=512, | |
| ) | |
| pe = PromptEmbeds( | |
| prompt_embeds | |
| ) | |
| pe.pooled_embeds = pooled_prompt_embeds | |
| return pe | |
| def get_model_has_grad(self): | |
| # return from a weight if it has grad | |
| return self.model.proj_out.weight.requires_grad | |
| def get_te_has_grad(self): | |
| # return from a weight if it has grad | |
| return self.text_encoder[1].encoder.block[0].layer[0].SelfAttention.q.weight.requires_grad | |
| def save_model(self, output_path, meta, save_dtype): | |
| # only save the unet | |
| transformer: FluxTransformer2DModel = unwrap_model(self.model) | |
| transformer.save_pretrained( | |
| save_directory=os.path.join(output_path, 'transformer'), | |
| safe_serialization=True, | |
| ) | |
| meta_path = os.path.join(output_path, 'aitk_meta.yaml') | |
| with open(meta_path, 'w') as f: | |
| yaml.dump(meta, f) | |
| def get_loss_target(self, *args, **kwargs): | |
| noise = kwargs.get('noise') | |
| batch = kwargs.get('batch') | |
| return (noise - batch.latents).detach() | |
| def condition_noisy_latents(self, latents: torch.Tensor, batch:'DataLoaderBatchDTO'): | |
| with torch.no_grad(): | |
| control_tensor = batch.control_tensor | |
| if control_tensor is not None: | |
| self.vae.to(self.device_torch) | |
| # we are not packed here, so we just need to pass them so we can pack them later | |
| control_tensor = control_tensor * 2 - 1 | |
| control_tensor = control_tensor.to(self.vae_device_torch, dtype=self.torch_dtype) | |
| # if it is not the size of batch.tensor, (bs,ch,h,w) then we need to resize it | |
| if batch.tensor is not None: | |
| target_h, target_w = batch.tensor.shape[2], batch.tensor.shape[3] | |
| else: | |
| # When caching latents, batch.tensor is None. We get the size from the file_items instead. | |
| target_h = batch.file_items[0].crop_height | |
| target_w = batch.file_items[0].crop_width | |
| if control_tensor.shape[2] != target_h or control_tensor.shape[3] != target_w: | |
| control_tensor = F.interpolate(control_tensor, size=(target_h, target_w), mode='bilinear') | |
| control_latent = self.encode_images(control_tensor).to(latents.device, latents.dtype) | |
| latents = torch.cat((latents, control_latent), dim=1) | |
| return latents.detach() | |
| def get_base_model_version(self): | |
| return "flux.1_kontext" |