Spaces:
Running
Running
Commit
·
873d3e4
1
Parent(s):
5719070
up
Browse files
docs/torch/README_for_torchcodec.md
ADDED
|
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[**Installation**](#installing-torchcodec) | [**Simple Example**](#using-torchcodec) | [**Detailed Example**](https://pytorch.org/torchcodec/stable/generated_examples/) | [**Documentation**](https://pytorch.org/torchcodec) | [**Contributing**](CONTRIBUTING.md) | [**License**](#license)
|
| 2 |
+
|
| 3 |
+
# TorchCodec
|
| 4 |
+
|
| 5 |
+
TorchCodec is a Python library for decoding video and audio data into PyTorch
|
| 6 |
+
tensors, on CPU and CUDA GPU. It also supports audio encoding, and video
|
| 7 |
+
encoding will come soon! It aims to be fast, easy to use, and well integrated
|
| 8 |
+
into the PyTorch ecosystem. If you want to use PyTorch to train ML models on
|
| 9 |
+
videos and audio, TorchCodec is how you turn these into data.
|
| 10 |
+
|
| 11 |
+
We achieve these capabilities through:
|
| 12 |
+
|
| 13 |
+
* Pythonic APIs that mirror Python and PyTorch conventions.
|
| 14 |
+
* Relying on [FFmpeg](https://www.ffmpeg.org/) to do the decoding and encoding.
|
| 15 |
+
TorchCodec uses the version of FFmpeg you already have installed. FFmpeg is a
|
| 16 |
+
mature library with broad coverage available on most systems. It is, however,
|
| 17 |
+
not easy to use. TorchCodec abstracts FFmpeg's complexity to ensure it is used
|
| 18 |
+
correctly and efficiently.
|
| 19 |
+
* Returning data as PyTorch tensors, ready to be fed into PyTorch transforms
|
| 20 |
+
or used directly to train models.
|
| 21 |
+
|
| 22 |
+
## Using TorchCodec
|
| 23 |
+
|
| 24 |
+
Here's a condensed summary of what you can do with TorchCodec. For more detailed
|
| 25 |
+
examples, [check out our
|
| 26 |
+
documentation](https://pytorch.org/torchcodec/stable/generated_examples/)!
|
| 27 |
+
|
| 28 |
+
#### Decoding
|
| 29 |
+
|
| 30 |
+
```python
|
| 31 |
+
from torchcodec.decoders import VideoDecoder
|
| 32 |
+
|
| 33 |
+
device = "cpu" # or e.g. "cuda" !
|
| 34 |
+
decoder = VideoDecoder("path/to/video.mp4", device=device)
|
| 35 |
+
|
| 36 |
+
decoder.metadata
|
| 37 |
+
# VideoStreamMetadata:
|
| 38 |
+
# num_frames: 250
|
| 39 |
+
# duration_seconds: 10.0
|
| 40 |
+
# bit_rate: 31315.0
|
| 41 |
+
# codec: h264
|
| 42 |
+
# average_fps: 25.0
|
| 43 |
+
# ... (truncated output)
|
| 44 |
+
|
| 45 |
+
# Simple Indexing API
|
| 46 |
+
decoder[0] # uint8 tensor of shape [C, H, W]
|
| 47 |
+
decoder[0 : -1 : 20] # uint8 stacked tensor of shape [N, C, H, W]
|
| 48 |
+
|
| 49 |
+
# Indexing, with PTS and duration info:
|
| 50 |
+
decoder.get_frames_at(indices=[2, 100])
|
| 51 |
+
# FrameBatch:
|
| 52 |
+
# data (shape): torch.Size([2, 3, 270, 480])
|
| 53 |
+
# pts_seconds: tensor([0.0667, 3.3367], dtype=torch.float64)
|
| 54 |
+
# duration_seconds: tensor([0.0334, 0.0334], dtype=torch.float64)
|
| 55 |
+
|
| 56 |
+
# Time-based indexing with PTS and duration info
|
| 57 |
+
decoder.get_frames_played_at(seconds=[0.5, 10.4])
|
| 58 |
+
# FrameBatch:
|
| 59 |
+
# data (shape): torch.Size([2, 3, 270, 480])
|
| 60 |
+
# pts_seconds: tensor([ 0.4671, 10.3770], dtype=torch.float64)
|
| 61 |
+
# duration_seconds: tensor([0.0334, 0.0334], dtype=torch.float64)
|
| 62 |
+
```
|
| 63 |
+
|
| 64 |
+
#### Clip sampling
|
| 65 |
+
|
| 66 |
+
```python
|
| 67 |
+
|
| 68 |
+
from torchcodec.samplers import clips_at_regular_timestamps
|
| 69 |
+
|
| 70 |
+
clips_at_regular_timestamps(
|
| 71 |
+
decoder,
|
| 72 |
+
seconds_between_clip_starts=1.5,
|
| 73 |
+
num_frames_per_clip=4,
|
| 74 |
+
seconds_between_frames=0.1
|
| 75 |
+
)
|
| 76 |
+
# FrameBatch:
|
| 77 |
+
# data (shape): torch.Size([9, 4, 3, 270, 480])
|
| 78 |
+
# pts_seconds: tensor([[ 0.0000, 0.0667, 0.1668, 0.2669],
|
| 79 |
+
# [ 1.4681, 1.5682, 1.6683, 1.7684],
|
| 80 |
+
# [ 2.9696, 3.0697, 3.1698, 3.2699],
|
| 81 |
+
# ... (truncated), dtype=torch.float64)
|
| 82 |
+
# duration_seconds: tensor([[0.0334, 0.0334, 0.0334, 0.0334],
|
| 83 |
+
# [0.0334, 0.0334, 0.0334, 0.0334],
|
| 84 |
+
# [0.0334, 0.0334, 0.0334, 0.0334],
|
| 85 |
+
# ... (truncated), dtype=torch.float64)
|
| 86 |
+
```
|
| 87 |
+
|
| 88 |
+
You can use the following snippet to generate a video with FFmpeg and tryout
|
| 89 |
+
TorchCodec:
|
| 90 |
+
|
| 91 |
+
```bash
|
| 92 |
+
fontfile=/usr/share/fonts/dejavu-sans-mono-fonts/DejaVuSansMono-Bold.ttf
|
| 93 |
+
output_video_file=/tmp/output_video.mp4
|
| 94 |
+
|
| 95 |
+
ffmpeg -f lavfi -i \
|
| 96 |
+
color=size=640x400:duration=10:rate=25:color=blue \
|
| 97 |
+
-vf "drawtext=fontfile=${fontfile}:fontsize=30:fontcolor=white:x=(w-text_w)/2:y=(h-text_h)/2:text='Frame %{frame_num}'" \
|
| 98 |
+
${output_video_file}
|
| 99 |
+
```
|
| 100 |
+
|
| 101 |
+
## Installing TorchCodec
|
| 102 |
+
### Installing CPU-only TorchCodec
|
| 103 |
+
|
| 104 |
+
1. Install the latest stable version of PyTorch following the
|
| 105 |
+
[official instructions](https://pytorch.org/get-started/locally/). For other
|
| 106 |
+
versions, refer to the table below for compatibility between versions of
|
| 107 |
+
`torch` and `torchcodec`.
|
| 108 |
+
|
| 109 |
+
2. Install FFmpeg, if it's not already installed. Linux distributions usually
|
| 110 |
+
come with FFmpeg pre-installed. TorchCodec supports all major FFmpeg versions
|
| 111 |
+
in [4, 7].
|
| 112 |
+
|
| 113 |
+
If FFmpeg is not already installed, or you need a more recent version, an
|
| 114 |
+
easy way to install it is to use `conda`:
|
| 115 |
+
|
| 116 |
+
```bash
|
| 117 |
+
conda install "ffmpeg<8"
|
| 118 |
+
# or
|
| 119 |
+
conda install "ffmpeg<8" -c conda-forge
|
| 120 |
+
```
|
| 121 |
+
|
| 122 |
+
3. Install TorchCodec:
|
| 123 |
+
|
| 124 |
+
```bash
|
| 125 |
+
pip install torchcodec
|
| 126 |
+
```
|
| 127 |
+
|
| 128 |
+
The following table indicates the compatibility between versions of
|
| 129 |
+
`torchcodec`, `torch` and Python.
|
| 130 |
+
|
| 131 |
+
| `torchcodec` | `torch` | Python |
|
| 132 |
+
| ------------------ | ------------------ | ------------------- |
|
| 133 |
+
| `main` / `nightly` | `main` / `nightly` | `>=3.10`, `<=3.13` |
|
| 134 |
+
| `0.6` | `2.8` | `>=3.9`, `<=3.13` |
|
| 135 |
+
| `0.5` | `2.7` | `>=3.9`, `<=3.13` |
|
| 136 |
+
| `0.4` | `2.7` | `>=3.9`, `<=3.13` |
|
| 137 |
+
| `0.3` | `2.7` | `>=3.9`, `<=3.13` |
|
| 138 |
+
| `0.2` | `2.6` | `>=3.9`, `<=3.13` |
|
| 139 |
+
| `0.1` | `2.5` | `>=3.9`, `<=3.12` |
|
| 140 |
+
| `0.0.3` | `2.4` | `>=3.8`, `<=3.12` |
|
| 141 |
+
|
| 142 |
+
### Installing CUDA-enabled TorchCodec
|
| 143 |
+
|
| 144 |
+
First, make sure you have a GPU that has NVDEC hardware that can decode the
|
| 145 |
+
format you want. Refer to Nvidia's GPU support matrix for more details
|
| 146 |
+
[here](https://developer.nvidia.com/video-encode-and-decode-gpu-support-matrix-new).
|
| 147 |
+
|
| 148 |
+
1. Install Pytorch corresponding to your CUDA Toolkit using the
|
| 149 |
+
[official instructions](https://pytorch.org/get-started/locally/). You'll
|
| 150 |
+
need the `libnpp` and `libnvrtc` CUDA libraries, which are usually part of
|
| 151 |
+
the CUDA Toolkit.
|
| 152 |
+
|
| 153 |
+
2. Install or compile FFmpeg with NVDEC support.
|
| 154 |
+
TorchCodec with CUDA should work with FFmpeg versions in [4, 7].
|
| 155 |
+
|
| 156 |
+
If FFmpeg is not already installed, or you need a more recent version, an
|
| 157 |
+
easy way to install it is to use `conda`:
|
| 158 |
+
|
| 159 |
+
```bash
|
| 160 |
+
conda install "ffmpeg<8"
|
| 161 |
+
# or
|
| 162 |
+
conda install "ffmpeg<8" -c conda-forge
|
| 163 |
+
```
|
| 164 |
+
|
| 165 |
+
If you are building FFmpeg from source you can follow Nvidia's guide to
|
| 166 |
+
configuring and installing FFmpeg with NVDEC support
|
| 167 |
+
[here](https://docs.nvidia.com/video-technologies/video-codec-sdk/12.0/ffmpeg-with-nvidia-gpu/index.html).
|
| 168 |
+
|
| 169 |
+
After installing FFmpeg make sure it has NVDEC support when you list the supported
|
| 170 |
+
decoders:
|
| 171 |
+
|
| 172 |
+
```bash
|
| 173 |
+
ffmpeg -decoders | grep -i nvidia
|
| 174 |
+
# This should show a line like this:
|
| 175 |
+
# V..... h264_cuvid Nvidia CUVID H264 decoder (codec h264)
|
| 176 |
+
```
|
| 177 |
+
|
| 178 |
+
To check that FFmpeg libraries work with NVDEC correctly you can decode a sample video:
|
| 179 |
+
|
| 180 |
+
```bash
|
| 181 |
+
ffmpeg -hwaccel cuda -hwaccel_output_format cuda -i test/resources/nasa_13013.mp4 -f null -
|
| 182 |
+
```
|
| 183 |
+
|
| 184 |
+
3. Install TorchCodec by passing in an `--index-url` parameter that corresponds
|
| 185 |
+
to your CUDA Toolkit version, example:
|
| 186 |
+
|
| 187 |
+
```bash
|
| 188 |
+
# This corresponds to CUDA Toolkit version 12.6. It should be the same one
|
| 189 |
+
# you used when you installed PyTorch (If you installed PyTorch with pip).
|
| 190 |
+
pip install torchcodec --index-url=https://download.pytorch.org/whl/cu126
|
| 191 |
+
```
|
| 192 |
+
|
| 193 |
+
Note that without passing in the `--index-url` parameter, `pip` installs
|
| 194 |
+
the CPU-only version of TorchCodec.
|
| 195 |
+
|
| 196 |
+
## Benchmark Results
|
| 197 |
+
|
| 198 |
+
The following was generated by running [our benchmark script](./benchmarks/decoders/generate_readme_data.py) on a lightly loaded 22-core machine with an Nvidia A100 with
|
| 199 |
+
5 [NVDEC decoders](https://docs.nvidia.com/video-technologies/video-codec-sdk/12.1/nvdec-application-note/index.html#).
|
| 200 |
+
|
| 201 |
+

|
| 202 |
+
|
| 203 |
+
The top row is a [Mandelbrot](https://ffmpeg.org/ffmpeg-filters.html#mandelbrot) video
|
| 204 |
+
generated from FFmpeg that has a resolution of 1280x720 at 60 fps and is 120 seconds long.
|
| 205 |
+
The bottom row is [promotional video from NASA](https://download.pytorch.org/torchaudio/tutorial-assets/stream-api/NASAs_Most_Scientifically_Complex_Space_Observatory_Requires_Precision-MP4_small.mp4)
|
| 206 |
+
that has a resolution of 960x540 at 29.7 fps and is 206 seconds long. Both videos were
|
| 207 |
+
encoded with libx264 and yuv420p pixel format. All decoders, except for TorchVision, used FFmpeg 6.1.2. TorchVision used FFmpeg 4.2.2.
|
| 208 |
+
|
| 209 |
+
For TorchCodec, the "approx" label means that it was using [approximate mode](https://pytorch.org/torchcodec/stable/generated_examples/approximate_mode.html)
|
| 210 |
+
for seeking.
|
| 211 |
+
|
| 212 |
+
## Contributing
|
| 213 |
+
|
| 214 |
+
We welcome contributions to TorchCodec! Please see our [contributing
|
| 215 |
+
guide](CONTRIBUTING.md) for more details.
|
| 216 |
+
|
| 217 |
+
## License
|
| 218 |
+
|
| 219 |
+
TorchCodec is released under the [BSD 3 license](./LICENSE).
|
| 220 |
+
|
| 221 |
+
However, TorchCodec may be used with code not written by Meta which may be
|
| 222 |
+
distributed under different licenses.
|
| 223 |
+
|
| 224 |
+
For example, if you build TorchCodec with ENABLE_CUDA=1 or use the CUDA-enabled
|
| 225 |
+
release of torchcodec, please review CUDA's license here:
|
| 226 |
+
[Nvidia licenses](https://docs.nvidia.com/cuda/eula/index.html).
|