Julian Bilcke
commited on
Commit
·
6dafe0a
1
Parent(s):
66bcc7e
various fixes
Browse files- vms/services/trainer.py +111 -38
vms/services/trainer.py
CHANGED
|
@@ -304,30 +304,38 @@ class TrainingService:
|
|
| 304 |
|
| 305 |
try:
|
| 306 |
# Basic validation
|
| 307 |
-
if not config.data_root or not Path(config.data_root).exists():
|
| 308 |
-
return f"Invalid data root path: {config.data_root}"
|
| 309 |
-
|
| 310 |
if not config.output_dir:
|
| 311 |
return "Output directory not specified"
|
| 312 |
|
| 313 |
-
#
|
| 314 |
-
|
| 315 |
-
|
|
|
|
| 316 |
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 325 |
|
| 326 |
-
if
|
| 327 |
return "No training files found"
|
| 328 |
-
|
| 329 |
-
return f"Mismatch between video count ({len(video_lines)}) and prompt count ({len(prompt_lines)})"
|
| 330 |
-
|
| 331 |
# Model-specific validation
|
| 332 |
if model_type == "hunyuan_video":
|
| 333 |
if config.batch_size > 2:
|
|
@@ -341,13 +349,13 @@ class TrainingService:
|
|
| 341 |
if config.batch_size > 4:
|
| 342 |
return "Wan model recommended batch size is 1-4"
|
| 343 |
|
| 344 |
-
logger.info(f"Config validation passed with {
|
| 345 |
return None
|
| 346 |
|
| 347 |
except Exception as e:
|
| 348 |
logger.error(f"Error during config validation: {str(e)}")
|
| 349 |
return f"Configuration validation failed: {str(e)}"
|
| 350 |
-
|
| 351 |
def start_training(
|
| 352 |
self,
|
| 353 |
model_type: str,
|
|
@@ -427,6 +435,36 @@ class TrainingService:
|
|
| 427 |
flow_weighting_scheme = preset.get("flow_weighting_scheme", "none")
|
| 428 |
preset_training_type = preset.get("training_type", "lora")
|
| 429 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 430 |
# Get config for selected model type with preset buckets
|
| 431 |
if model_type == "hunyuan_video":
|
| 432 |
if training_type == "lora":
|
|
@@ -477,6 +515,9 @@ class TrainingService:
|
|
| 477 |
config.training_type = training_type
|
| 478 |
config.flow_weighting_scheme = flow_weighting_scheme
|
| 479 |
|
|
|
|
|
|
|
|
|
|
| 480 |
# Update LoRA parameters if using LoRA training type
|
| 481 |
if training_type == "lora":
|
| 482 |
config.lora_rank = int(lora_rank)
|
|
@@ -501,26 +542,58 @@ class TrainingService:
|
|
| 501 |
logger.error(error_msg)
|
| 502 |
return "Error: Invalid configuration", error_msg
|
| 503 |
|
| 504 |
-
#
|
| 505 |
-
accelerate_args = [
|
| 506 |
-
"accelerate", "launch",
|
| 507 |
-
"--mixed_precision=bf16",
|
| 508 |
-
"--num_processes=1",
|
| 509 |
-
"--num_machines=1",
|
| 510 |
-
"--dynamo_backend=no"
|
| 511 |
-
]
|
| 512 |
-
|
| 513 |
-
accelerate_args.append(str(train_script))
|
| 514 |
-
|
| 515 |
-
# Convert config to command line arguments
|
| 516 |
config_args = config.to_args_list()
|
| 517 |
-
|
| 518 |
logger.debug("Generated args list: %s", config_args)
|
| 519 |
-
|
| 520 |
-
#
|
| 521 |
-
|
| 522 |
-
|
| 523 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 524 |
|
| 525 |
# Set environment variables
|
| 526 |
env = os.environ.copy()
|
|
@@ -532,7 +605,7 @@ class TrainingService:
|
|
| 532 |
|
| 533 |
# Start the training process
|
| 534 |
process = subprocess.Popen(
|
| 535 |
-
|
| 536 |
stdout=subprocess.PIPE,
|
| 537 |
stderr=subprocess.PIPE,
|
| 538 |
start_new_session=True,
|
|
|
|
| 304 |
|
| 305 |
try:
|
| 306 |
# Basic validation
|
|
|
|
|
|
|
|
|
|
| 307 |
if not config.output_dir:
|
| 308 |
return "Output directory not specified"
|
| 309 |
|
| 310 |
+
# For the dataset_config validation, we now expect it to be a JSON file
|
| 311 |
+
dataset_config_path = Path(config.data_root)
|
| 312 |
+
if not dataset_config_path.exists():
|
| 313 |
+
return f"Dataset config file does not exist: {dataset_config_path}"
|
| 314 |
|
| 315 |
+
# Check the JSON file is valid
|
| 316 |
+
try:
|
| 317 |
+
with open(dataset_config_path, 'r') as f:
|
| 318 |
+
dataset_json = json.load(f)
|
| 319 |
|
| 320 |
+
# Basic validation of the JSON structure
|
| 321 |
+
if "datasets" not in dataset_json or not isinstance(dataset_json["datasets"], list) or len(dataset_json["datasets"]) == 0:
|
| 322 |
+
return "Invalid dataset config JSON: missing or empty 'datasets' array"
|
| 323 |
+
|
| 324 |
+
except json.JSONDecodeError:
|
| 325 |
+
return f"Invalid JSON in dataset config file: {dataset_config_path}"
|
| 326 |
+
except Exception as e:
|
| 327 |
+
return f"Error reading dataset config file: {str(e)}"
|
| 328 |
+
|
| 329 |
+
# Check training videos directory exists
|
| 330 |
+
if not TRAINING_VIDEOS_PATH.exists():
|
| 331 |
+
return f"Training videos directory does not exist: {TRAINING_VIDEOS_PATH}"
|
| 332 |
+
|
| 333 |
+
# Validate file counts
|
| 334 |
+
video_count = len(list(TRAINING_VIDEOS_PATH.glob('*.mp4')))
|
| 335 |
|
| 336 |
+
if video_count == 0:
|
| 337 |
return "No training files found"
|
| 338 |
+
|
|
|
|
|
|
|
| 339 |
# Model-specific validation
|
| 340 |
if model_type == "hunyuan_video":
|
| 341 |
if config.batch_size > 2:
|
|
|
|
| 349 |
if config.batch_size > 4:
|
| 350 |
return "Wan model recommended batch size is 1-4"
|
| 351 |
|
| 352 |
+
logger.info(f"Config validation passed with {video_count} training files")
|
| 353 |
return None
|
| 354 |
|
| 355 |
except Exception as e:
|
| 356 |
logger.error(f"Error during config validation: {str(e)}")
|
| 357 |
return f"Configuration validation failed: {str(e)}"
|
| 358 |
+
|
| 359 |
def start_training(
|
| 360 |
self,
|
| 361 |
model_type: str,
|
|
|
|
| 435 |
flow_weighting_scheme = preset.get("flow_weighting_scheme", "none")
|
| 436 |
preset_training_type = preset.get("training_type", "lora")
|
| 437 |
|
| 438 |
+
# Create a proper dataset configuration JSON file
|
| 439 |
+
dataset_config_file = OUTPUT_PATH / "dataset_config.json"
|
| 440 |
+
|
| 441 |
+
# Determine appropriate ID token based on model type
|
| 442 |
+
id_token = None
|
| 443 |
+
if model_type == "hunyuan_video":
|
| 444 |
+
id_token = "afkx"
|
| 445 |
+
elif model_type == "ltx_video":
|
| 446 |
+
id_token = "BW_STYLE"
|
| 447 |
+
# Wan doesn't use an ID token by default, so leave it as None
|
| 448 |
+
|
| 449 |
+
dataset_config = {
|
| 450 |
+
"datasets": [
|
| 451 |
+
{
|
| 452 |
+
"data_root": str(TRAINING_PATH),
|
| 453 |
+
"dataset_type": "video",
|
| 454 |
+
"id_token": id_token,
|
| 455 |
+
"video_resolution_buckets": [[f, h, w] for f, h, w in training_buckets],
|
| 456 |
+
"reshape_mode": "bicubic",
|
| 457 |
+
"remove_common_llm_caption_prefixes": True
|
| 458 |
+
}
|
| 459 |
+
]
|
| 460 |
+
}
|
| 461 |
+
|
| 462 |
+
# Write the dataset config to file
|
| 463 |
+
with open(dataset_config_file, 'w') as f:
|
| 464 |
+
json.dump(dataset_config, f, indent=2)
|
| 465 |
+
|
| 466 |
+
logger.info(f"Created dataset configuration file at {dataset_config_file}")
|
| 467 |
+
|
| 468 |
# Get config for selected model type with preset buckets
|
| 469 |
if model_type == "hunyuan_video":
|
| 470 |
if training_type == "lora":
|
|
|
|
| 515 |
config.training_type = training_type
|
| 516 |
config.flow_weighting_scheme = flow_weighting_scheme
|
| 517 |
|
| 518 |
+
# CRITICAL FIX: Update the dataset_config to point to the JSON file, not the directory
|
| 519 |
+
config.data_root = str(dataset_config_file)
|
| 520 |
+
|
| 521 |
# Update LoRA parameters if using LoRA training type
|
| 522 |
if training_type == "lora":
|
| 523 |
config.lora_rank = int(lora_rank)
|
|
|
|
| 542 |
logger.error(error_msg)
|
| 543 |
return "Error: Invalid configuration", error_msg
|
| 544 |
|
| 545 |
+
# Convert config to command line arguments for all launcher types
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 546 |
config_args = config.to_args_list()
|
|
|
|
| 547 |
logger.debug("Generated args list: %s", config_args)
|
| 548 |
+
|
| 549 |
+
# Use different launch commands based on model type
|
| 550 |
+
# For Wan models, use torchrun instead of accelerate launch
|
| 551 |
+
if model_type == "wan":
|
| 552 |
+
# Configure torchrun parameters
|
| 553 |
+
torchrun_args = [
|
| 554 |
+
"torchrun",
|
| 555 |
+
"--standalone",
|
| 556 |
+
"--nproc_per_node=1",
|
| 557 |
+
"--nnodes=1",
|
| 558 |
+
"--rdzv_backend=c10d",
|
| 559 |
+
"--rdzv_endpoint=localhost:0",
|
| 560 |
+
str(train_script)
|
| 561 |
+
]
|
| 562 |
+
|
| 563 |
+
# Additional args needed for torchrun
|
| 564 |
+
config_args.extend([
|
| 565 |
+
"--parallel_backend", "ptd",
|
| 566 |
+
"--pp_degree", "1",
|
| 567 |
+
"--dp_degree", "1",
|
| 568 |
+
"--dp_shards", "1",
|
| 569 |
+
"--cp_degree", "1",
|
| 570 |
+
"--tp_degree", "1"
|
| 571 |
+
])
|
| 572 |
+
|
| 573 |
+
# Log the full command for debugging
|
| 574 |
+
command_str = ' '.join(torchrun_args + config_args)
|
| 575 |
+
self.append_log(f"Command: {command_str}")
|
| 576 |
+
logger.info(f"Executing command: {command_str}")
|
| 577 |
+
|
| 578 |
+
launch_args = torchrun_args
|
| 579 |
+
else:
|
| 580 |
+
# For other models, use accelerate launch as before
|
| 581 |
+
# Configure accelerate parameters
|
| 582 |
+
accelerate_args = [
|
| 583 |
+
"accelerate", "launch",
|
| 584 |
+
"--mixed_precision=bf16",
|
| 585 |
+
"--num_processes=1",
|
| 586 |
+
"--num_machines=1",
|
| 587 |
+
"--dynamo_backend=no",
|
| 588 |
+
str(train_script)
|
| 589 |
+
]
|
| 590 |
+
|
| 591 |
+
# Log the full command for debugging
|
| 592 |
+
command_str = ' '.join(accelerate_args + config_args)
|
| 593 |
+
self.append_log(f"Command: {command_str}")
|
| 594 |
+
logger.info(f"Executing command: {command_str}")
|
| 595 |
+
|
| 596 |
+
launch_args = accelerate_args
|
| 597 |
|
| 598 |
# Set environment variables
|
| 599 |
env = os.environ.copy()
|
|
|
|
| 605 |
|
| 606 |
# Start the training process
|
| 607 |
process = subprocess.Popen(
|
| 608 |
+
launch_args + config_args,
|
| 609 |
stdout=subprocess.PIPE,
|
| 610 |
stderr=subprocess.PIPE,
|
| 611 |
start_new_session=True,
|