Julian Bilcke
commited on
Commit
·
1a07d0d
1
Parent(s):
d7b6806
let's work on megadatasets
Browse files- CLAUDE.md +18 -0
- README.md +12 -0
- vms/config.py +3 -0
- vms/ui/project/tabs/caption_tab.py +24 -7
- vms/ui/project/tabs/manage_tab.py +7 -2
CLAUDE.md
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Video Model Studio - Guidelines for Claude
|
| 2 |
+
|
| 3 |
+
## Build & Run Commands
|
| 4 |
+
- Setup: `./setup.sh` (with flash attention) or `./setup_no_captions.sh` (without)
|
| 5 |
+
- Run: `./run.sh` or `python3.10 app.py`
|
| 6 |
+
- Test: `python3 tests/test_dataset.py`
|
| 7 |
+
- Single model test: `bash tests/scripts/dummy_cogvideox_lora.sh`
|
| 8 |
+
|
| 9 |
+
## Code Style
|
| 10 |
+
- Python version: 3.10 (required for flash-attention compatibility)
|
| 11 |
+
- Type hints: Use typing module annotations for all functions
|
| 12 |
+
- Docstrings: Google style with Args/Returns sections
|
| 13 |
+
- Error handling: Use try/except with specific exceptions, log errors
|
| 14 |
+
- Imports: Group standard lib, third-party, and project imports
|
| 15 |
+
- Naming: snake_case for functions/variables, PascalCase for classes
|
| 16 |
+
- Use Path objects from pathlib instead of string paths
|
| 17 |
+
- Format utility functions: Extract reusable logic to separate functions
|
| 18 |
+
- Environment variables: Use parse_bool_env for boolean env vars
|
README.md
CHANGED
|
@@ -217,3 +217,15 @@ By default `run.sh` will store stuff in `.data/` (located inside the current wor
|
|
| 217 |
```bash
|
| 218 |
./run.sh
|
| 219 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 217 |
```bash
|
| 218 |
./run.sh
|
| 219 |
```
|
| 220 |
+
|
| 221 |
+
### Environment Variables
|
| 222 |
+
|
| 223 |
+
- `STORAGE_PATH`: Specifies the base storage path (default: '.data')
|
| 224 |
+
- `HF_API_TOKEN`: Your Hugging Face API token for accessing models and publishing
|
| 225 |
+
- `USE_LARGE_DATASET`: Set to "true" or "1" to enable large dataset mode, which:
|
| 226 |
+
- Hides the caption list in the caption tab
|
| 227 |
+
- Disables preview and editing of individual captions
|
| 228 |
+
- Disables the dataset download button
|
| 229 |
+
- Use this when working with large datasets that would be too slow to display in the UI
|
| 230 |
+
- `PRELOAD_CAPTIONING_MODEL`: Preloads the captioning model at startup
|
| 231 |
+
- `ASK_USER_TO_DUPLICATE_SPACE`: Prompts users to duplicate the space
|
vms/config.py
CHANGED
|
@@ -19,6 +19,9 @@ def parse_bool_env(env_value: Optional[str]) -> bool:
|
|
| 19 |
HF_API_TOKEN = os.getenv("HF_API_TOKEN")
|
| 20 |
ASK_USER_TO_DUPLICATE_SPACE = parse_bool_env(os.getenv("ASK_USER_TO_DUPLICATE_SPACE"))
|
| 21 |
|
|
|
|
|
|
|
|
|
|
| 22 |
# Base storage path
|
| 23 |
STORAGE_PATH = Path(os.environ.get('STORAGE_PATH', '.data'))
|
| 24 |
|
|
|
|
| 19 |
HF_API_TOKEN = os.getenv("HF_API_TOKEN")
|
| 20 |
ASK_USER_TO_DUPLICATE_SPACE = parse_bool_env(os.getenv("ASK_USER_TO_DUPLICATE_SPACE"))
|
| 21 |
|
| 22 |
+
# For large datasets that would be slow to display or download
|
| 23 |
+
USE_LARGE_DATASET = parse_bool_env(os.getenv("USE_LARGE_DATASET"))
|
| 24 |
+
|
| 25 |
# Base storage path
|
| 26 |
STORAGE_PATH = Path(os.environ.get('STORAGE_PATH', '.data'))
|
| 27 |
|
vms/ui/project/tabs/caption_tab.py
CHANGED
|
@@ -11,7 +11,7 @@ from pathlib import Path
|
|
| 11 |
import mimetypes
|
| 12 |
|
| 13 |
from vms.utils import BaseTab, is_image_file, is_video_file, copy_files_to_training_dir
|
| 14 |
-
from vms.config import DEFAULT_CAPTIONING_BOT_INSTRUCTIONS, DEFAULT_PROMPT_PREFIX, STAGING_PATH, TRAINING_VIDEOS_PATH
|
| 15 |
|
| 16 |
logger = logging.getLogger(__name__)
|
| 17 |
|
|
@@ -28,7 +28,10 @@ class CaptionTab(BaseTab):
|
|
| 28 |
"""Create the Caption tab UI components"""
|
| 29 |
with gr.TabItem(self.title, id=self.id) as tab:
|
| 30 |
with gr.Row():
|
| 31 |
-
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
with gr.Row():
|
| 34 |
with gr.Column():
|
|
@@ -62,7 +65,7 @@ class CaptionTab(BaseTab):
|
|
| 62 |
interactive=False
|
| 63 |
)
|
| 64 |
|
| 65 |
-
with gr.Row():
|
| 66 |
with gr.Column():
|
| 67 |
self.components["training_dataset"] = gr.Dataframe(
|
| 68 |
headers=["name", "status"],
|
|
@@ -95,6 +98,10 @@ class CaptionTab(BaseTab):
|
|
| 95 |
visible=True
|
| 96 |
)
|
| 97 |
self.components["original_file_path"] = gr.State(value=None)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
|
| 99 |
return tab
|
| 100 |
|
|
@@ -174,10 +181,16 @@ class CaptionTab(BaseTab):
|
|
| 174 |
|
| 175 |
def refresh(self) -> Dict[str, Any]:
|
| 176 |
"""Refresh the dataset list with current data"""
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 181 |
|
| 182 |
def show_refreshing_status(self) -> List[List[str]]:
|
| 183 |
"""Show a 'Refreshing...' status in the dataframe"""
|
|
@@ -318,6 +331,10 @@ class CaptionTab(BaseTab):
|
|
| 318 |
|
| 319 |
def list_training_files_to_caption(self) -> List[List[str]]:
|
| 320 |
"""List all clips and images - both pending and captioned"""
|
|
|
|
|
|
|
|
|
|
|
|
|
| 321 |
files = []
|
| 322 |
already_listed = {}
|
| 323 |
|
|
|
|
| 11 |
import mimetypes
|
| 12 |
|
| 13 |
from vms.utils import BaseTab, is_image_file, is_video_file, copy_files_to_training_dir
|
| 14 |
+
from vms.config import DEFAULT_CAPTIONING_BOT_INSTRUCTIONS, DEFAULT_PROMPT_PREFIX, STAGING_PATH, TRAINING_VIDEOS_PATH, USE_LARGE_DATASET
|
| 15 |
|
| 16 |
logger = logging.getLogger(__name__)
|
| 17 |
|
|
|
|
| 28 |
"""Create the Caption tab UI components"""
|
| 29 |
with gr.TabItem(self.title, id=self.id) as tab:
|
| 30 |
with gr.Row():
|
| 31 |
+
if USE_LARGE_DATASET:
|
| 32 |
+
self.components["caption_title"] = gr.Markdown("## Captioning (Large Dataset Mode)")
|
| 33 |
+
else:
|
| 34 |
+
self.components["caption_title"] = gr.Markdown("## Captioning of 0 files (0 bytes)")
|
| 35 |
|
| 36 |
with gr.Row():
|
| 37 |
with gr.Column():
|
|
|
|
| 65 |
interactive=False
|
| 66 |
)
|
| 67 |
|
| 68 |
+
with gr.Row(visible=not USE_LARGE_DATASET):
|
| 69 |
with gr.Column():
|
| 70 |
self.components["training_dataset"] = gr.Dataframe(
|
| 71 |
headers=["name", "status"],
|
|
|
|
| 98 |
visible=True
|
| 99 |
)
|
| 100 |
self.components["original_file_path"] = gr.State(value=None)
|
| 101 |
+
|
| 102 |
+
with gr.Row(visible=USE_LARGE_DATASET):
|
| 103 |
+
gr.Markdown("### Large Dataset Mode Active")
|
| 104 |
+
gr.Markdown("Caption preview and editing is disabled to improve performance with large datasets.")
|
| 105 |
|
| 106 |
return tab
|
| 107 |
|
|
|
|
| 181 |
|
| 182 |
def refresh(self) -> Dict[str, Any]:
|
| 183 |
"""Refresh the dataset list with current data"""
|
| 184 |
+
if USE_LARGE_DATASET:
|
| 185 |
+
# In large dataset mode, we don't attempt to list files
|
| 186 |
+
return {
|
| 187 |
+
"training_dataset": [["Large dataset mode enabled", "listing skipped"]]
|
| 188 |
+
}
|
| 189 |
+
else:
|
| 190 |
+
training_dataset = self.list_training_files_to_caption()
|
| 191 |
+
return {
|
| 192 |
+
"training_dataset": training_dataset
|
| 193 |
+
}
|
| 194 |
|
| 195 |
def show_refreshing_status(self) -> List[List[str]]:
|
| 196 |
"""Show a 'Refreshing...' status in the dataframe"""
|
|
|
|
| 331 |
|
| 332 |
def list_training_files_to_caption(self) -> List[List[str]]:
|
| 333 |
"""List all clips and images - both pending and captioned"""
|
| 334 |
+
# In large dataset mode, return a placeholder message instead of listing all files
|
| 335 |
+
if USE_LARGE_DATASET:
|
| 336 |
+
return [["Large dataset mode enabled", "listing skipped"]]
|
| 337 |
+
|
| 338 |
files = []
|
| 339 |
already_listed = {}
|
| 340 |
|
vms/ui/project/tabs/manage_tab.py
CHANGED
|
@@ -11,7 +11,7 @@ from typing import Dict, Any, List, Optional
|
|
| 11 |
from vms.utils import BaseTab, validate_model_repo
|
| 12 |
from vms.config import (
|
| 13 |
HF_API_TOKEN, VIDEOS_TO_SPLIT_PATH, STAGING_PATH, TRAINING_VIDEOS_PATH,
|
| 14 |
-
TRAINING_PATH, MODEL_PATH, OUTPUT_PATH, LOG_FILE_PATH
|
| 15 |
)
|
| 16 |
|
| 17 |
logger = logging.getLogger(__name__)
|
|
@@ -36,8 +36,13 @@ class ManageTab(BaseTab):
|
|
| 36 |
self.components["download_dataset_btn"] = gr.DownloadButton(
|
| 37 |
"📦 Download training dataset (.zip)",
|
| 38 |
variant="secondary",
|
| 39 |
-
size="lg"
|
|
|
|
| 40 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
self.components["download_model_btn"] = gr.DownloadButton(
|
| 42 |
"🧠 Download weights (.safetensors)",
|
| 43 |
variant="secondary",
|
|
|
|
| 11 |
from vms.utils import BaseTab, validate_model_repo
|
| 12 |
from vms.config import (
|
| 13 |
HF_API_TOKEN, VIDEOS_TO_SPLIT_PATH, STAGING_PATH, TRAINING_VIDEOS_PATH,
|
| 14 |
+
TRAINING_PATH, MODEL_PATH, OUTPUT_PATH, LOG_FILE_PATH, USE_LARGE_DATASET
|
| 15 |
)
|
| 16 |
|
| 17 |
logger = logging.getLogger(__name__)
|
|
|
|
| 36 |
self.components["download_dataset_btn"] = gr.DownloadButton(
|
| 37 |
"📦 Download training dataset (.zip)",
|
| 38 |
variant="secondary",
|
| 39 |
+
size="lg",
|
| 40 |
+
visible=not USE_LARGE_DATASET
|
| 41 |
)
|
| 42 |
+
# If we have a large dataset, display a message explaining why download is disabled
|
| 43 |
+
if USE_LARGE_DATASET:
|
| 44 |
+
gr.Markdown("📦 Training dataset download disabled for large datasets")
|
| 45 |
+
|
| 46 |
self.components["download_model_btn"] = gr.DownloadButton(
|
| 47 |
"🧠 Download weights (.safetensors)",
|
| 48 |
variant="secondary",
|