| from typing import List, Tuple, Union | |
| import torch | |
| from transformers import AutoTokenizer, GlmModel | |
| from .base import ProcessorMixin | |
| class CogView4GLMProcessor(ProcessorMixin): | |
| r""" | |
| Processor for the GLM family of models. This processor is used to encode text inputs and return the embeddings | |
| and attention masks for the input text. | |
| This processor is specific to CogView4 but can be used with any other model. | |
| Args: | |
| output_names (`List[str]`): | |
| The names of the outputs that the processor should return. The first output is the embeddings of the input | |
| text and the second output is the attention mask for the input text. | |
| """ | |
| def __init__(self, output_names: List[str]): | |
| super().__init__() | |
| self.output_names = output_names | |
| assert len(self.output_names) == 1 | |
| def forward( | |
| self, | |
| tokenizer: AutoTokenizer, | |
| text_encoder: GlmModel, | |
| caption: Union[str, List[str]], | |
| max_sequence_length: int, | |
| ) -> Tuple[torch.Tensor, torch.Tensor]: | |
| r""" | |
| Encode the input text and return the embeddings and attention mask for the input text. | |
| Args: | |
| tokenizer (`AutoTokenizer`): | |
| The tokenizer used to tokenize the input text. | |
| text_encoder (`GlmModel`): | |
| The text encoder used to encode the input text. | |
| caption (`Union[str, List[str]]`): | |
| The input text to be encoded. | |
| max_sequence_length (`int`): | |
| The maximum sequence length of the input text. | |
| """ | |
| if isinstance(caption, str): | |
| caption = [caption] | |
| device = text_encoder.device | |
| dtype = text_encoder.dtype | |
| text_inputs = tokenizer( | |
| caption, | |
| padding="longest", | |
| max_length=max_sequence_length, | |
| truncation=True, | |
| add_special_tokens=True, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids.to(device) | |
| current_length = text_input_ids.size(1) | |
| pad_length = 16 - current_length % 16 | |
| if pad_length > 0: | |
| pad_ids = text_input_ids.new_full((text_input_ids.shape[0], pad_length), fill_value=tokenizer.pad_token_id) | |
| text_input_ids = torch.cat([pad_ids, text_input_ids], dim=1) | |
| prompt_embeds = text_encoder(text_input_ids, output_hidden_states=True).hidden_states[-2] | |
| prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) | |
| return {self.output_names[0]: prompt_embeds} | |