Julian Bilcke
we are going to hack into finetrainers
9fd1204
raw
history blame
14.9 kB
import os
import random
import unittest
import numpy as np
import torch
from torch.nn.functional import scaled_dot_product_attention
from finetrainers.models.attention_dispatch import (
AttentionProvider,
_AttentionProviderRegistry,
_set_context_parallel_options,
attention_dispatch,
attention_provider,
flash_attn_flash_attention,
native_cudnn_attention,
native_efficient_attention,
native_flash_attention,
)
from finetrainers.parallel.ptd import _EquipartitionSharder
def set_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
def get_world_size():
if torch.distributed.is_initialized():
return torch.distributed.get_world_size()
return int(os.environ.get("WORLD_SIZE", 1))
class AttentionDispatchTest(unittest.TestCase):
@classmethod
def setUpClass(cls):
set_seed(0)
def test_forward(self):
if not torch.cuda.is_available():
self.skipTest("CUDA is not available")
cuda_capability = torch.cuda.get_device_capability()
query, key, value = self._create_dummy_inputs()
all_providers = [
(AttentionProvider._NATIVE_MATH, 0),
(AttentionProvider.NATIVE, 5e-3),
(AttentionProvider.FLASH, 5e-3),
(AttentionProvider.FLASH_VARLEN, 5e-3),
(AttentionProvider.FLEX, 2e-2),
(AttentionProvider._NATIVE_CUDNN, 5e-3),
(AttentionProvider._NATIVE_EFFICIENT, 5e-3),
(AttentionProvider._NATIVE_FLASH, 5e-3),
(AttentionProvider.SAGE, 1e-1),
(AttentionProvider.SAGE_VARLEN, 2e-0),
(AttentionProvider._SAGE_QK_INT8_PV_FP16_CUDA, 2e-0), # TODO: look into the high difference threshold
(AttentionProvider._SAGE_QK_INT8_PV_FP16_TRITON, 2e-0),
(AttentionProvider.XFORMERS, 5e-3),
]
if cuda_capability >= (8, 9):
all_providers.append((AttentionProvider._SAGE_QK_INT8_PV_FP8_CUDA, 2e-0))
if cuda_capability >= (9, 0):
all_providers.append((AttentionProvider._SAGE_QK_INT8_PV_FP16_CUDA_SM90, 2e-0))
ref_output = None
for i, (provider, threshold) in enumerate(all_providers):
try:
output = self._check_forward_pass(provider, query, key, value)
if i == 0:
ref_output = output.detach().clone()
else:
self.assertTrue(
torch.allclose(output, ref_output, atol=threshold), f"Forward pass mismatch for {provider}"
)
except Exception as e:
print(f"Warning: Forward pass test failed for {provider} with error: {e}")
def test_backward(self):
if not torch.cuda.is_available():
self.skipTest("CUDA is not available")
query, key, value = self._create_dummy_inputs()
selected_providers = [
AttentionProvider.FLASH,
AttentionProvider.FLASH_VARLEN,
AttentionProvider.FLEX,
AttentionProvider.NATIVE,
AttentionProvider.XFORMERS,
]
ref_output = None
for i, provider in enumerate(selected_providers):
try:
output = self._check_backward_pass(provider, query, key, value)
if i == 0:
ref_output = output.detach().clone()
else:
if provider == AttentionProvider.FLEX:
threshold = 1e-2
else:
threshold = 1e-3
self.assertTrue(
torch.allclose(output, ref_output, atol=threshold), f"Backward pass mismatch for {provider}"
)
except Exception as e:
print(f"Warning: Backward pass test failed for {provider} with error: {e}")
def _create_dummy_inputs(
self, batch_size=2, num_heads=8, seq_len=256, head_dim=64, dtype=torch.bfloat16, device="cuda"
):
torch.manual_seed(0)
query = torch.randn(batch_size, num_heads, seq_len, head_dim, dtype=dtype, device=device)
key = torch.randn(batch_size, num_heads, seq_len, head_dim, dtype=dtype, device=device)
value = torch.randn(batch_size, num_heads, seq_len, head_dim, dtype=dtype, device=device)
return query, key, value
def _check_forward_pass(self, provider: AttentionProvider, query, key, value):
kwargs = {}
if provider == AttentionProvider._SAGE_QK_INT8_PV_FP16_CUDA:
kwargs["pv_accum_dtype"] = "fp32"
with attention_provider(provider):
output = attention_dispatch(query, key, value, attention_kwargs=kwargs)
self.assertIsNotNone(output)
self.assertEqual(output.shape, query.shape)
return output
def _check_backward_pass(self, provider: AttentionProvider, query, key, value):
query.requires_grad_(True)
key.requires_grad_(True)
value.requires_grad_(True)
with attention_provider(provider):
output = attention_dispatch(query, key, value)
loss = output.mean()
loss.backward()
self.assertTrue(query.grad is not None)
self.assertTrue(key.grad is not None)
self.assertTrue(value.grad is not None)
query.grad.zero_()
key.grad.zero_()
value.grad.zero_()
return output
class RingAttentionTest(unittest.TestCase):
@classmethod
def setUpClass(cls):
torch.distributed.init_process_group(backend="nccl")
rank, world_size = torch.distributed.get_rank(), torch.distributed.get_world_size()
cls.rank = rank
cls.world_size = world_size
torch.cuda.set_device(rank)
cls.mesh = torch.distributed.device_mesh.init_device_mesh("cuda", (world_size,))
set_seed(0)
cls.batch_size = 2
cls.num_heads = 8
cls.seq_len = 256
cls.head_dim = 64
cls.dtype = torch.bfloat16
cls.device = "cuda"
_AttentionProviderRegistry._set_context_parallel(
mesh=cls.mesh, convert_to_fp32=True, rotate_method="allgather"
)
_set_context_parallel_options(is_causal=False)
cls.full_query = torch.randn(
cls.batch_size,
cls.num_heads,
cls.seq_len * cls.world_size,
cls.head_dim,
dtype=cls.dtype,
device=cls.device,
requires_grad=True,
)
cls.full_key = torch.randn(
cls.batch_size,
cls.num_heads,
cls.seq_len * cls.world_size,
cls.head_dim,
dtype=cls.dtype,
device=cls.device,
requires_grad=True,
)
cls.full_value = torch.randn(
cls.batch_size,
cls.num_heads,
cls.seq_len * cls.world_size,
cls.head_dim,
dtype=cls.dtype,
device=cls.device,
requires_grad=True,
)
# Ensure all ranks have the same data
with torch.no_grad():
torch.distributed.broadcast(cls.full_query, src=0)
torch.distributed.broadcast(cls.full_key, src=0)
torch.distributed.broadcast(cls.full_value, src=0)
with torch.nn.attention.sdpa_kernel(torch.nn.attention.SDPBackend.MATH):
reference_output = scaled_dot_product_attention(cls.full_query, cls.full_key, cls.full_value)
cls.reference_output = reference_output.detach().clone()
reference_output.sum().backward()
cls.query, cls.key, cls.value = (
_EquipartitionSharder.shard(x, dim=2, mesh=cls.mesh).detach().clone()
for x in (cls.full_query, cls.full_key, cls.full_value)
)
@classmethod
def tearDownClass(cls):
torch.distributed.destroy_process_group()
def _test_forward_native_cudnn_attention(self, atol: float = 1e-3):
output = native_cudnn_attention(self.query, self.key, self.value)
output = _EquipartitionSharder.unshard(output, dim=2, mesh=self.mesh)
self.assertEqual(output.shape, self.reference_output.shape)
self.assertTrue(torch.allclose(output, self.reference_output, atol=atol))
def _test_forward_native_efficient_attention(self, atol: float = 1e-3):
output = native_efficient_attention(self.query, self.key, self.value)
output = _EquipartitionSharder.unshard(output, dim=2, mesh=self.mesh)
self.assertEqual(output.shape, self.reference_output.shape)
self.assertTrue(torch.allclose(output, self.reference_output, atol=atol))
def _test_forward_native_flash_attention(self, atol: float = 1e-3):
output = native_flash_attention(self.query, self.key, self.value)
output = _EquipartitionSharder.unshard(output, dim=2, mesh=self.mesh)
self.assertEqual(output.shape, self.reference_output.shape)
self.assertTrue(torch.allclose(output, self.reference_output, atol=atol))
def _test_forward_flash_attn_flash_attention(self, atol: float = 1e-3):
output = flash_attn_flash_attention(self.query, self.key, self.value)
output = _EquipartitionSharder.unshard(output, dim=2, mesh=self.mesh)
self.assertEqual(output.shape, self.reference_output.shape)
self.assertTrue(torch.allclose(output, self.reference_output, atol=atol))
def _test_backward_native_cudnn_attention(self, atol: float = 1e-3):
query, key, value = (x.detach().clone() for x in (self.query, self.key, self.value))
query.requires_grad = True
key.requires_grad = True
value.requires_grad = True
output = native_cudnn_attention(query, key, value)
output = _EquipartitionSharder.unshard(output, dim=2, mesh=self.mesh)
output.sum().backward()
with torch.no_grad():
q_g, k_g, v_g = (
_EquipartitionSharder.shard(x, dim=2, mesh=self.mesh)
for x in (self.full_query.grad, self.full_key.grad, self.full_value.grad)
)
self.assertTrue(torch.allclose(query.grad, q_g, atol=atol))
self.assertTrue(torch.allclose(key.grad, k_g, atol=atol))
self.assertTrue(torch.allclose(value.grad, v_g, atol=atol))
def _test_backward_native_efficient_attention(self, atol: float = 1e-3):
query, key, value = (x.detach().clone() for x in (self.query, self.key, self.value))
query.requires_grad = True
key.requires_grad = True
value.requires_grad = True
output = native_efficient_attention(query, key, value)
output = _EquipartitionSharder.unshard(output, dim=2, mesh=self.mesh)
output.sum().backward()
with torch.no_grad():
q_g, k_g, v_g = (
_EquipartitionSharder.shard(x, dim=2, mesh=self.mesh)
for x in (self.full_query.grad, self.full_key.grad, self.full_value.grad)
)
self.assertTrue(torch.allclose(query.grad, q_g, atol=atol))
self.assertTrue(torch.allclose(key.grad, k_g, atol=atol))
self.assertTrue(torch.allclose(value.grad, v_g, atol=atol))
def _test_backward_native_flash_attention(self, atol: float = 1e-3):
query, key, value = (x.detach().clone() for x in (self.query, self.key, self.value))
query.requires_grad = True
key.requires_grad = True
value.requires_grad = True
output = native_flash_attention(query, key, value)
output = _EquipartitionSharder.unshard(output, dim=2, mesh=self.mesh)
output.sum().backward()
with torch.no_grad():
q_g, k_g, v_g = (
_EquipartitionSharder.shard(x, dim=2, mesh=self.mesh)
for x in (self.full_query.grad, self.full_key.grad, self.full_value.grad)
)
self.assertTrue(torch.allclose(query.grad, q_g, atol=atol))
self.assertTrue(torch.allclose(key.grad, k_g, atol=atol))
self.assertTrue(torch.allclose(value.grad, v_g, atol=atol))
def _test_backward_flash_attn_flash_attention(self, atol: float = 1e-3):
query, key, value = (x.detach().clone() for x in (self.query, self.key, self.value))
query.requires_grad = True
key.requires_grad = True
value.requires_grad = True
output = flash_attn_flash_attention(query, key, value)
output = _EquipartitionSharder.unshard(output, dim=2, mesh=self.mesh)
output.sum().backward()
with torch.no_grad():
q_g, k_g, v_g = (
_EquipartitionSharder.shard(x, dim=2, mesh=self.mesh)
for x in (self.full_query.grad, self.full_key.grad, self.full_value.grad)
)
self.assertTrue(torch.allclose(query.grad, q_g, atol=atol))
self.assertTrue(torch.allclose(key.grad, k_g, atol=atol))
self.assertTrue(torch.allclose(value.grad, v_g, atol=atol))
class RingAttentionCPTesterMixin:
def test_forward_native_cudnn_attention(self):
self._test_forward_native_cudnn_attention(atol=1e-2)
def test_forward_native_efficient_attention(self):
self._test_forward_native_efficient_attention(atol=1e-2)
def test_forward_native_flash_attention(self):
self._test_forward_native_flash_attention(atol=1e-2)
def test_forward_flash_attn_flash_attention(self):
self._test_forward_flash_attn_flash_attention(atol=1e-2)
def test_backward_native_cudnn_attention(self):
atol = 1e-2 * self.world_size # TODO: make bounds more strict
self._test_backward_native_cudnn_attention(atol=atol)
def test_backward_native_efficient_attention(self):
atol = 1e-2 * self.world_size # TODO: make bounds more strict
self._test_backward_native_efficient_attention(atol=atol)
def test_backward_native_flash_attention(self):
atol = 1e-2 * self.world_size # TODO: make bounds more strict
self._test_backward_native_flash_attention(atol=atol)
@unittest.skip(
"""query diff: 0.298828125, key diff: 2.09375, value diff: 0.68359375; Needs further investigation"""
)
def test_backward_flash_attn_flash_attention(self):
# Seems to require much higher bound for some reason
atol = 1.5e-1 * self.world_size # TODO: make bounds more strict
self._test_backward_flash_attn_flash_attention(atol=atol)
@unittest.skipIf(
not torch.cuda.is_available() or get_world_size() != 2, "CUDA is not available or world size is not 2"
)
class RingAttentionCP2Test(RingAttentionTest, RingAttentionCPTesterMixin):
pass
@unittest.skipIf(
not torch.cuda.is_available() or get_world_size() != 4, "CUDA is not available or world size is not 4"
)
class RingAttentionCP4Test(RingAttentionTest, RingAttentionCPTesterMixin):
pass