File size: 2,664 Bytes
			
			c550ede 829df0b 7e21e7f 9d0a236 7e21e7f 9d0a236 afaa1bd 9d0a236 afaa1bd 9d0a236 829df0b 6a27da1 9d0a236 c550ede 0cbf47d 2fea0cc 68220ff d31b788 0cbf47d efa1d68 c499b99 aa773d2 5069ba3 2d4beed 6f7875d 91fb4ef 871b95b 0cbf47d 91fb4ef 6472a9e f20bd02 364fc34 f20bd02  | 
								1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84  | 
								--find-links https://download.pytorch.org/whl/torch_stable.html # we seem to have an issue with Torch 2.8 # I believe it works but it is incompatible with older weights formats? # it looks like they changed the checkpoint format or something # python3.10/site-packages/torch/distributed/checkpoint/default_planner.py", line 471, in create_default_local_load_plan # RuntimeError: Missing key in checkpoint state_dict: lr_scheduler._is_initial. # #torch==2.8.0 #torchvision==0.23.0 #torchdata==0.11.0 #torchao==0.12.0 #torchcodec # flash-attn @ https://github.com/Dao-AILab/flash-attention/releases/download/v2.8.3/flash_attn-2.8.3+cu12torch2.8cxx11abiFALSE-cp310-cp310-linux_x86_64.whl # # if we revert back to torch 2.7, then we get another error: # Missing key in checkpoint state_dict: optimizer.param_groups.scale_shift_table.decoupled_weight_decay. # #torch==2.7.1 #torchvision==0.22.1 #torchdata==0.11.0 #torchao==0.12.0 #torchcodec==0.5.0 #flash-attn @ https://github.com/Dao-AILab/flash-attention/releases/download/v2.7.4.post1/flash_attn-2.7.4.post1+cu12torch2.7cxx11abiFALSE-cp310-cp310-linux_x86_64.whl # # so in the end, we have to revert back to the 2.6: # torch==2.6.0 torchvision==0.21.0 torchdata==0.10.1 torchao==0.9.0 # for torch 2.6, we must use torchcodec 0.2 torchcodec==0.2.1 --index-url=https://download.pytorch.org/whl/cu128 flash-attn @ https://github.com/Dao-AILab/flash-attention/releases/download/v2.7.4.post1/flash_attn-2.7.4.post1+cu12torch2.6cxx11abiFALSE-cp310-cp310-linux_x86_64.whl # something broke in Transformers > 4.55.4 transformers==4.55.4 # For GPU monitoring of NVIDIA chipsets pynvml # Pin datasets to 3.6.0 to avoid VideoDecoder issues with 4.0.0 # see https://github.com/huggingface/finetrainers/issues/424#issuecomment-3255342554 datasets==3.6.0 # we are waiting for the next PyPI release #finetrainers==0.1.0 finetrainers @ git+https://github.com/huggingface/finetrainers.git@main # temporary fix for pip install bug: #finetrainers @ git+https://github.com/jbilcke-hf/finetrainers-patches.git@fix_missing_sft_trainer_files # it is recommended to always use the latest version diffusers @ git+https://github.com/huggingface/diffusers.git@main imageio imageio-ffmpeg # for youtube video download pytube pytubefix # for scene splitting scenedetect[opencv] # for llava video / captionning pillow pillow-avif-plugin polars einops open_clip_torch av==14.1.0 # for some reason LLaVA-NeXT has ceased to work, # but I think it it due to a breaking change in Transformers git+https://github.com/LLaVA-VL/LLaVA-NeXT.git # for our frontend gradio==5.33.1 gradio_toggle gradio_modal # used for the monitor matplotlib  |