Spaces:
Paused
Paused
| from ..models import ModelManager | |
| from ..models.hunyuan_dit_text_encoder import HunyuanDiTCLIPTextEncoder | |
| from ..models.stepvideo_text_encoder import STEP1TextEncoder | |
| from ..models.stepvideo_dit import StepVideoModel | |
| from ..models.stepvideo_vae import StepVideoVAE | |
| from ..schedulers.flow_match import FlowMatchScheduler | |
| from .base import BasePipeline | |
| from ..prompters import StepVideoPrompter | |
| import torch | |
| from einops import rearrange | |
| import numpy as np | |
| from PIL import Image | |
| from ..vram_management import enable_vram_management, AutoWrappedModule, AutoWrappedLinear | |
| from transformers.models.bert.modeling_bert import BertEmbeddings | |
| from ..models.stepvideo_dit import RMSNorm | |
| from ..models.stepvideo_vae import CausalConv, CausalConvAfterNorm, Upsample2D, BaseGroupNorm | |
| class StepVideoPipeline(BasePipeline): | |
| def __init__(self, device="cuda", torch_dtype=torch.float16): | |
| super().__init__(device=device, torch_dtype=torch_dtype) | |
| self.scheduler = FlowMatchScheduler(sigma_min=0.0, extra_one_step=True, shift=13.0, reverse_sigmas=True, num_train_timesteps=1) | |
| self.prompter = StepVideoPrompter() | |
| self.text_encoder_1: HunyuanDiTCLIPTextEncoder = None | |
| self.text_encoder_2: STEP1TextEncoder = None | |
| self.dit: StepVideoModel = None | |
| self.vae: StepVideoVAE = None | |
| self.model_names = ['text_encoder_1', 'text_encoder_2', 'dit', 'vae'] | |
| def enable_vram_management(self, num_persistent_param_in_dit=None): | |
| dtype = next(iter(self.text_encoder_1.parameters())).dtype | |
| enable_vram_management( | |
| self.text_encoder_1, | |
| module_map = { | |
| torch.nn.Linear: AutoWrappedLinear, | |
| BertEmbeddings: AutoWrappedModule, | |
| torch.nn.LayerNorm: AutoWrappedModule, | |
| }, | |
| module_config = dict( | |
| offload_dtype=dtype, | |
| offload_device="cpu", | |
| onload_dtype=dtype, | |
| onload_device="cpu", | |
| computation_dtype=torch.float32, | |
| computation_device=self.device, | |
| ), | |
| ) | |
| dtype = next(iter(self.text_encoder_2.parameters())).dtype | |
| enable_vram_management( | |
| self.text_encoder_2, | |
| module_map = { | |
| torch.nn.Linear: AutoWrappedLinear, | |
| RMSNorm: AutoWrappedModule, | |
| torch.nn.Embedding: AutoWrappedModule, | |
| }, | |
| module_config = dict( | |
| offload_dtype=dtype, | |
| offload_device="cpu", | |
| onload_dtype=dtype, | |
| onload_device="cpu", | |
| computation_dtype=self.torch_dtype, | |
| computation_device=self.device, | |
| ), | |
| ) | |
| dtype = next(iter(self.dit.parameters())).dtype | |
| enable_vram_management( | |
| self.dit, | |
| module_map = { | |
| torch.nn.Linear: AutoWrappedLinear, | |
| torch.nn.Conv2d: AutoWrappedModule, | |
| torch.nn.LayerNorm: AutoWrappedModule, | |
| RMSNorm: AutoWrappedModule, | |
| }, | |
| module_config = dict( | |
| offload_dtype=dtype, | |
| offload_device="cpu", | |
| onload_dtype=dtype, | |
| onload_device=self.device, | |
| computation_dtype=self.torch_dtype, | |
| computation_device=self.device, | |
| ), | |
| max_num_param=num_persistent_param_in_dit, | |
| overflow_module_config = dict( | |
| offload_dtype=dtype, | |
| offload_device="cpu", | |
| onload_dtype=dtype, | |
| onload_device="cpu", | |
| computation_dtype=self.torch_dtype, | |
| computation_device=self.device, | |
| ), | |
| ) | |
| dtype = next(iter(self.vae.parameters())).dtype | |
| enable_vram_management( | |
| self.vae, | |
| module_map = { | |
| torch.nn.Linear: AutoWrappedLinear, | |
| torch.nn.Conv3d: AutoWrappedModule, | |
| CausalConv: AutoWrappedModule, | |
| CausalConvAfterNorm: AutoWrappedModule, | |
| Upsample2D: AutoWrappedModule, | |
| BaseGroupNorm: AutoWrappedModule, | |
| }, | |
| module_config = dict( | |
| offload_dtype=dtype, | |
| offload_device="cpu", | |
| onload_dtype=dtype, | |
| onload_device="cpu", | |
| computation_dtype=self.torch_dtype, | |
| computation_device=self.device, | |
| ), | |
| ) | |
| self.enable_cpu_offload() | |
| def fetch_models(self, model_manager: ModelManager): | |
| self.text_encoder_1 = model_manager.fetch_model("hunyuan_dit_clip_text_encoder") | |
| self.text_encoder_2 = model_manager.fetch_model("stepvideo_text_encoder_2") | |
| self.dit = model_manager.fetch_model("stepvideo_dit") | |
| self.vae = model_manager.fetch_model("stepvideo_vae") | |
| self.prompter.fetch_models(self.text_encoder_1, self.text_encoder_2) | |
| def from_model_manager(model_manager: ModelManager, torch_dtype=None, device=None): | |
| if device is None: device = model_manager.device | |
| if torch_dtype is None: torch_dtype = model_manager.torch_dtype | |
| pipe = StepVideoPipeline(device=device, torch_dtype=torch_dtype) | |
| pipe.fetch_models(model_manager) | |
| return pipe | |
| def encode_prompt(self, prompt, positive=True): | |
| clip_embeds, llm_embeds, llm_mask = self.prompter.encode_prompt(prompt, device=self.device, positive=positive) | |
| clip_embeds = clip_embeds.to(dtype=self.torch_dtype, device=self.device) | |
| llm_embeds = llm_embeds.to(dtype=self.torch_dtype, device=self.device) | |
| llm_mask = llm_mask.to(dtype=self.torch_dtype, device=self.device) | |
| return {"encoder_hidden_states_2": clip_embeds, "encoder_hidden_states": llm_embeds, "encoder_attention_mask": llm_mask} | |
| def tensor2video(self, frames): | |
| frames = rearrange(frames, "C T H W -> T H W C") | |
| frames = ((frames.float() + 1) * 127.5).clip(0, 255).cpu().numpy().astype(np.uint8) | |
| frames = [Image.fromarray(frame) for frame in frames] | |
| return frames | |
| def __call__( | |
| self, | |
| prompt, | |
| negative_prompt="", | |
| input_video=None, | |
| denoising_strength=1.0, | |
| seed=None, | |
| rand_device="cpu", | |
| height=544, | |
| width=992, | |
| num_frames=204, | |
| cfg_scale=9.0, | |
| num_inference_steps=30, | |
| tiled=True, | |
| tile_size=(34, 34), | |
| tile_stride=(16, 16), | |
| smooth_scale=0.6, | |
| progress_bar_cmd=lambda x: x, | |
| progress_bar_st=None, | |
| ): | |
| # Tiler parameters | |
| tiler_kwargs = {"tiled": tiled, "tile_size": tile_size, "tile_stride": tile_stride} | |
| # Scheduler | |
| self.scheduler.set_timesteps(num_inference_steps, denoising_strength) | |
| # Initialize noise | |
| latents = self.generate_noise((1, max(num_frames//17*3, 1), 64, height//16, width//16), seed=seed, device=rand_device, dtype=self.torch_dtype).to(self.device) | |
| # Encode prompts | |
| self.load_models_to_device(["text_encoder_1", "text_encoder_2"]) | |
| prompt_emb_posi = self.encode_prompt(prompt, positive=True) | |
| if cfg_scale != 1.0: | |
| prompt_emb_nega = self.encode_prompt(negative_prompt, positive=False) | |
| # Denoise | |
| self.load_models_to_device(["dit"]) | |
| for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)): | |
| timestep = timestep.unsqueeze(0).to(dtype=self.torch_dtype, device=self.device) | |
| print(f"Step {progress_id + 1} / {len(self.scheduler.timesteps)}") | |
| # Inference | |
| noise_pred_posi = self.dit(latents, timestep=timestep, **prompt_emb_posi) | |
| if cfg_scale != 1.0: | |
| noise_pred_nega = self.dit(latents, timestep=timestep, **prompt_emb_nega) | |
| noise_pred = noise_pred_nega + cfg_scale * (noise_pred_posi - noise_pred_nega) | |
| else: | |
| noise_pred = noise_pred_posi | |
| # Scheduler | |
| latents = self.scheduler.step(noise_pred, self.scheduler.timesteps[progress_id], latents) | |
| # Decode | |
| self.load_models_to_device(['vae']) | |
| frames = self.vae.decode(latents, device=self.device, smooth_scale=smooth_scale, **tiler_kwargs) | |
| self.load_models_to_device([]) | |
| frames = self.tensor2video(frames[0]) | |
| return frames | |